Kurs:Mathematik für Anwender (Osnabrück 2020-2021)/Teil I/Vorlesung 10/latex

Aus Wikiversity
Zur Navigation springen Zur Suche springen
\setcounter{section}{ 10 }







\zwischenueberschrift{Stetige Funktionen}

Den Abstand zwischen zwei reellen Zahlen \mathkor {} {x} {und} {x'} {} bezeichnen wir mit
\mavergleichskette
{\vergleichskette
{ d(x,x') }
{ \defeq }{ \betrag { x-x' } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

Bei einer Funktion \maabbdisp {f} {\R} {\R } {} kann man sich fragen, inwiefern der Abstand in der Wertemenge durch den Abstand in der Definitionsmenge kontrollierbar ist. Sei
\mavergleichskette
{\vergleichskette
{x }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{y }
{ = }{f(x) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} der Bildpunkt. Man möchte, dass für Punkte $x'$, die \anfuehrung{nahe}{} an $x$ sind, auch die Bildpunkte
\mathl{f(x')}{} \anfuehrung{nahe}{} an
\mathl{f(x)}{} sind. Schon lineare Funktionen mit unterschiedlichen Steigungen zeigen, dass die \anfuehrung{Nähe}{} im Bildbereich nicht mit der \anfuehrung{Nähe}{} im Definitionsbereich direkt verglichen weden kann. Die Zielsetzung ist vielmehr \zusatzklammer {im Sinne des in der siebten Vorlesung erwähnten Approximationsprinzip} {} {,} dass zu einer gewünschten Genauigkeit im Bildbereich überhaupt eine Ausgangsgenauigkeit gefunden werden kann, die sichert, dass die Funktionswerte innerhalb der gewünschten Genauigkeit beieinander liegen.

Um diese intuitive Vorstellung zu präzisieren, sei ein
\mavergleichskette
{\vergleichskette
{\epsilon }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} vorgegeben. Dieses $\epsilon$ repräsentiert eine \anfuehrung{gewünschte Zielgenauigkeit}{.} Die Frage ist dann, ob man ein
\mavergleichskette
{\vergleichskette
{ \delta }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} finden kann \zusatzklammer {eine \anfuehrung{Startgenauigkeit}{}} {} {} mit der Eigenschaft, dass für alle $x'$ mit
\mavergleichskette
{\vergleichskette
{ d { \left( x, x' \right) } }
{ \leq }{ \delta }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Beziehung
\mavergleichskette
{\vergleichskette
{ d { \left( f(x), f(x') \right) } }
{ \leq }{ \epsilon }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gilt. Dies führt zum Begriff der stetigen Abbildung.




\inputdefinition
{ }
{

Es sei
\mavergleichskette
{\vergleichskette
{D }
{ \subseteq }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine Teilmenge, \maabbdisp {f} {D} {\R } {} eine \definitionsverweis {Funktion}{}{} und
\mavergleichskette
{\vergleichskette
{x }
{ \in }{D }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Man sagt, dass $f$ \definitionswort {stetig}{} im Punkt $x$ ist, wenn es zu jedem
\mavergleichskette
{\vergleichskette
{\epsilon }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein
\mavergleichskette
{\vergleichskette
{\delta }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} derart gibt, dass für alle
\mavergleichskette
{\vergleichskette
{x' }
{ \in }{D }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{ \betrag { x-x' } }
{ \leq }{ \delta }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Abschätzung
\mavergleichskette
{\vergleichskette
{ \betrag { f(x)- f(x') } }
{ \leq }{ \epsilon }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gilt. Man sagt, dass $f$ \definitionswort {stetig}{} ist, wenn sie in jedem Punkt
\mathl{x \in D}{} stetig ist.

}

Bei $D$ sollte man an den Definitionsbereich der Funktion denken. Typische Situationen sind, dass $D$ ganz $\R$ ist, oder ein Intervall, oder $\R$ ohne endlich viele Punkte und Ähnliches. Statt mit den reellen Zahlen \mathkor {} {\epsilon} {und} {\delta} {} kann man genauso gut mit Stammbrüchen \mathkor {} {{ \frac{ 1 }{ n } }} {und} {{ \frac{ 1 }{ m } }} {} arbeiten.




\inputbeispiel{}
{

Eine konstante Funktion \maabbeledisp {} {\R} {\R } {x} {c } {,} ist \definitionsverweis {stetig}{}{.} Zu jedem vorgegebenen $\epsilon$ kann man hier ein beliebiges $\delta$ wählen, da ja ohnehin
\mavergleichskettedisp
{\vergleichskette
{ d(f(x),f(x')) }
{ =} {d(c,c) }
{ =} {0 }
{ \leq} {\epsilon }
{ } { }
} {}{}{} gilt.

Die Identität \maabbeledisp {} {\R} {\R } {x} {x } {,} ist ebenfalls \definitionsverweis {stetig}{}{.} Zu jedem vorgegebenen $\epsilon$ kann man hier
\mavergleichskette
{\vergleichskette
{\delta }
{ = }{ \epsilon }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} wählen, was zu der Tautologie führt: Wenn
\mathl{d(x,x') \leq \delta = \epsilon}{,} so ist
\mavergleichskettedisp
{\vergleichskette
{ d(f(x),f(x')) }
{ =} {d(x,x') }
{ \leq} {\epsilon }
{ } { }
{ } {}
} {}{}{.}


}






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Heaviside.eps} }
\end{center}
\bildtext {} }

\bildlizenz { Heaviside.svg } {} {Lenny222} {Commons} {PD} {}




\inputbeispiel{}
{

Wir betrachten die Funktion \maabbdisp {f} {\R} {\R } {} mit
\mathdisp {f(x) = \begin{cases} 0, \text{ falls } x < 0 \, , \\ 1, \text{ falls } x \geq 0 \, . \end{cases}} { }
Diese Funktion ist im Nullpunkt $0$ nicht stetig. Für
\mathl{\epsilon= { \frac{ 1 }{ 2 } }}{} und jedes beliebige positive $\delta$ gibt es nämlich negative Zahlen $x'$ mit
\mavergleichskette
{\vergleichskette
{d(0,x') }
{ = }{ \betrag { x' } }
{ \leq }{ \delta }
{ }{ }
{ }{ }
} {}{}{.} Für diese ist aber
\mavergleichskette
{\vergleichskette
{ d(f(0),f(x')) }
{ = }{d(1,0) }
{ = }{1 }
{ \not\leq }{ { \frac{ 1 }{ 2 } } }
{ }{ }
} {}{}{.}


}






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {WeierstrassFunction.eps} }
\end{center}
\bildtext {Nicht jede stetige Funktion kann man zeichnen, auch nicht nach beliebiger Vergrößerung. Gezeigt wird eine Approximation einer Weierstraß-Funktion, die stetig ist, aber nirgendwo differenzierbar. Bei einer stetigen Funktion kann man zwar die Größe der Schwankungen im Bildbereich durch Einschränkungen im Definitionsbereich kontrollieren, die Anzahl der Schwankungen \zusatzklammer {die Anzahl der Richtungswechsel des Graphen} {} {} kann man aber nicht kontrollieren.} }

\bildlizenz { WeierstrassFunction.svg } {} {Eeyore22} {Commons} {PD} {}

Die folgende Aussage bringt die Stetigkeit mit konvergenten Folgen in Verbindung.





\inputfaktbeweis
{Reelle Funktion/Stetigkeit in einem Punkt/Charakterisierung/Fakt}
{Lemma}
{}
{

\faktsituation {Es sei
\mavergleichskette
{\vergleichskette
{D }
{ \subseteq }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine Teilmenge, \maabbdisp {f} {D} {\R } {} eine \definitionsverweis {Funktion}{}{} und
\mavergleichskette
{\vergleichskette
{x }
{ \in }{D }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\faktuebergang {Dann sind folgende Aussagen äquivalent.}
\faktfolgerung {\aufzaehlungzwei {$f$ ist \definitionsverweis {stetig}{}{} im Punkt $x$. } {Für jede \definitionsverweis {konvergente Folge}{}{}
\mathl{{ \left( x_n \right) }_{n \in \N }}{} in $D$ mit
\mavergleichskette
{\vergleichskette
{ \lim_{n \rightarrow \infty} x_n }
{ = }{ x }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist auch die \definitionsverweis {Bildfolge}{}{}
\mathl{{ \left( f(x_n) \right) }_{ n \in \N }}{} konvergent mit dem Grenzwert
\mathl{f(x)}{.} }}
\faktzusatz {}
\faktzusatz {}

}
{

\teilbeweis {}{}{}
{Sei (1) erfüllt und sei
\mathl{{ \left( x_n \right) }_{n \in \N }}{} eine Folge in $D$, die gegen $x$ konvergiert. Wir müssen zeigen, dass
\mavergleichskettedisp
{\vergleichskette
{ \lim_{n \rightarrow \infty} f(x_n) }
{ =} { f(x) }
{ } { }
{ } { }
{ } { }
} {}{}{} ist. Dazu sei
\mavergleichskette
{\vergleichskette
{ \epsilon }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} vorgegeben. Wegen (1) gibt es ein
\mavergleichskette
{\vergleichskette
{ \delta }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit der angegebenen Abschätzungseigenschaft und wegen der Konvergenz von
\mathl{{ \left( x_n \right) }_{n \in \N }}{} gegen $x$ gibt es eine natürliche Zahl $n_0$ derart, dass für alle
\mavergleichskette
{\vergleichskette
{n }
{ \geq }{n_0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Abschätzung
\mavergleichskettedisp
{\vergleichskette
{ d(x_n,x) }
{ \leq} { \delta }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt. Nach der Wahl von $\delta$ ist dann
\mathdisp {d(f(x_n), f(x)) \leq \epsilon \text{ für alle } n \geq n_0} { , }
so dass die Bildfolge gegen
\mathl{f(x)}{} konvergiert.}
{} \teilbeweis {}{}{}
{Sei (2) erfüllt.  Wir nehmen an, dass $f$ nicht stetig ist. Dann gibt es ein
\mavergleichskette
{\vergleichskette
{ \epsilon }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} derart, dass es für alle
\mavergleichskette
{\vergleichskette
{ \delta }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} Elemente
\mathl{z \in D}{} gibt, deren Abstand zu $x$ maximal gleich $\delta$ ist, deren Wert
\mathl{f(z)}{} unter der Abbildung aber zu
\mathl{f(x)}{} einen Abstand besitzt, der größer als $\epsilon$ ist. Dies gilt dann insbesondere für die Stammbrüche
\mathbed {\delta=1/n} {}
{n \in \N_+} {}
{} {} {} {.} D.h. für jede natürliche Zahl
\mavergleichskette
{\vergleichskette
{n }
{ \in }{ \N_+ }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gibt es ein
\mathl{x_n \in D}{} mit
\mathdisp {d(x_n ,x) \leq \frac{1}{n} \text{ und mit } d(f(x_n), f(x)) > \epsilon} { . }
Diese so konstruierte Folge
\mathl{{ \left( x_n \right) }_{n \in \N }}{} konvergiert gegen $x$, aber die Bildfolge konvergiert nicht gegen
\mathl{f(x)}{,} da der Abstand der Bildfolgenglieder zu
\mathl{f(x)}{} zumindest $\epsilon$ ist. Dies ist ein Widerspruch zu (2).}
{}

}







\zwischenueberschrift{Rechenregeln für stetige Funktionen}





\inputfaktbeweis
{Reelle Funktion/Stetig/Hintereinanderschaltung/Fakt}
{Lemma}
{}
{

\faktsituation {Es seien
\mavergleichskette
{\vergleichskette
{D }
{ \subseteq }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{E }
{ \subseteq }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} Teilmengen und \maabbdisp {f} {D} {\R } {} und \maabbdisp {g} {E} {\R } {} Funktionen mit
\mavergleichskette
{\vergleichskette
{f(D) }
{ \subseteq }{E }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\faktuebergang {Dann gelten folgende Aussagen.}
\faktfolgerung {\aufzaehlungzwei {Wenn $f$ in
\mavergleichskette
{\vergleichskette
{x }
{ \in }{D }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und $g$ in
\mathl{f(x)}{} \definitionsverweis {stetig}{}{} sind, so ist auch die \definitionsverweis {Hintereinanderschaltung}{}{}
\mathl{g \circ f}{} in $x$ stetig. } {Wenn \mathkor {} {f} {und} {g} {} stetig sind, so ist auch
\mathl{g \circ f}{} stetig. }}
\faktzusatz {}
\faktzusatz {}

}
{

Die Aussage (1) ergibt sich direkt aus der Folgencharakterisierung der Stetigkeit. Daraus folgt auch (2).

}






\inputfaktbeweis
{Reelle Funktion/Stetigkeit/Addition, Multiplikation, Invertierung von Funktionen/Fakt}
{Lemma}
{}
{

\faktsituation {Es sei
\mavergleichskette
{\vergleichskette
{D }
{ \subseteq }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und seien \maabbdisp {f,g} {D } { \R } {} \definitionsverweis {stetige Funktionen}{}{.}}
\faktfolgerung {Dann sind auch die Funktionen \maabbeledisp {f+g} { D} { \R } {x} {f(x)+g(x) } {,} \maabbeledisp {f-g} {D} { \R } {x} {f(x)-g(x) } {,} \maabbeledisp {f \cdot g} { D} { \R } {x} {f(x) \cdot g(x) } {,} stetig. Für eine Teilmenge
\mavergleichskette
{\vergleichskette
{U }
{ \subseteq }{D }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} auf der $g$ keine Nullstelle besitzt, ist auch die Funktion \maabbeledisp {f/g} {U} {\R } {x} {f(x)/g(x) } {,} stetig.}
\faktzusatz {}
\faktzusatz {}

}
{

Dies ergibt sich aus der Folgencharakterisierung der Stetigkeit und Lemma 8.1.

}





\inputfaktbeweis
{Polynomfunktion/R/Stetig/Fakt}
{Korollar}
{}
{

\faktsituation {\definitionsverweis {Polynomfunktionen}{}{} \maabbeledisp {P} { \R } { \R } {x} {P(x) } {,}}
\faktfolgerung {sind \definitionsverweis {stetig}{}{.}}
\faktzusatz {}
\faktzusatz {}

}
{

Aufgrund von Beispiel 10.2 und Lemma 10.6 sind für jedes
\mathl{n \in \N}{} die Potenzen \maabbeledisp {} {\R} {\R } {x} {x^n } {,} stetig. Daher sind auch für jedes
\mathl{a \in \R}{} die Funktionen \maabbeledisp {} { \R } { \R } {x} { ax^n } {,} stetig und wiederum aufgrund von Lemma 10.6 sind auch alle Funktionen \maabbeledisp {} { \R} { \R } {x} {a_nx^n +a_{n-1} x^{n-1} + \cdots + a_1x +a_0 } {,} stetig.

}







\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {RationalDegree2byXedi.eps} }
\end{center}
\bildtext {Rationale Funktionen sind auf ihrer Definitionsmenge stetig.} }

\bildlizenz { RationalDegree2byXedi.gif } {} {Sam Derbyshire} {en. Wikipedia} {CC-by-sa 3.0} {}





\inputfaktbeweis
{Rationale Funktion/R/Stetig/Fakt}
{Korollar}
{}
{

\faktsituation {Es seien
\mavergleichskette
{\vergleichskette
{P,Q }
{ \in }{ \R [X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \definitionsverweis {Polynome}{}{} und es sei
\mavergleichskette
{\vergleichskette
{U }
{ \defeq }{ { \left\{ x \in \R \mid Q(x) \neq 0 \right\} } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\faktfolgerung {Dann ist die \definitionsverweis {rationale Funktion}{}{} \maabbeledisp {} {U} { \R } {x} { { \frac{ P(x) }{ Q(x) } } } {,} \definitionsverweis {stetig}{}{.}}
\faktzusatz {}
\faktzusatz {}

}
{

Dies folgt aus Korollar 10.7 und Lemma 10.6.

}







\zwischenueberschrift{Grenzwerte von Funktionen}

Funktionen sind häufig in bestimmten Punkten nicht definiert, beispielsweise, weil die verwendeten Funktionsterme nicht definiert sind. Es macht aber einen Unterschied, ob nur die gewählte Funktionsvorschrift in diesem Punkt nicht definiert ist, es aber eine sinnvolle \zusatzklammer {stetige} {} {} Fortsetzung gibt, oder ob die Funktion selbst prinzipiell nicht sinnvoll fortsetzbar ist \zusatzklammer {weil sie beispielsweise einen Pol oder ein chaotischeres Verhalten besitzt} {} {.} Die folgende Begriffsbildung wird vor allem für die Definition der Differenzierbarkeit wichtig werden \zusatzklammer {besitzen die Differenzenquotienten einen sinnvollen Limes, der dann der Differentialquotient heißt} {} {.}




\inputdefinition
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{ T }
{ \subseteq }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine Teilmenge und sei
\mavergleichskette
{\vergleichskette
{ a }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein Punkt. Es sei \maabbdisp {f} {T} {\R } {} eine \definitionsverweis {Funktion}{}{.} Dann heißt
\mavergleichskette
{\vergleichskette
{ b }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \definitionswort {Grenzwert}{} \zusatzklammer {oder \definitionswort {Limes}{}} {} {} von $f$ in $a$, wenn für jede Folge
\mathl{{ \left( x_n \right) }_{n \in \N }}{} in $T$, die gegen $a$ \definitionsverweis {konvergiert}{}{,} auch die Bildfolge
\mathl{{ \left( f(x_n) \right) }_{ n \in \N }}{} gegen $b$ konvergiert. In diesem Fall schreibt man
\mavergleichskettedisp
{\vergleichskette
{ \operatorname{lim}_{ x \rightarrow a } \, f(x) }
{ =} { b }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}

Dieser Begriff ist eigentlich nur dann sinnvoll, wenn es überhaupt Folgen in $T$ gibt, die gegen $a$ konvergieren. Eine typische Situation ist die folgende: Es sei $I$ ein Intervall,
\mavergleichskette
{\vergleichskette
{a }
{ \in }{I }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} sei ein Punkt darin und es sei
\mavergleichskette
{\vergleichskette
{T }
{ = }{I \setminus\{a\} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Die Funktion sei auf $T$, aber nicht im Punkt $a$ definiert, und es geht um die Frage, inwiefern man $f$ zu einer sinnvollen Funktion $\tilde{f}$ auf ganz $I$ fortsetzen kann. Dabei soll
\mathl{\tilde{f}(a)}{} durch $f$ bestimmt sein.





\inputfaktbeweis
{Reelle Zahlen/Teilmenge/Funktion/Grenzwert/Rechenregeln/Fakt}
{Lemma}
{}
{

\faktsituation {Es sei
\mavergleichskette
{\vergleichskette
{ T }
{ \subseteq }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine Teilmenge und sei
\mavergleichskette
{\vergleichskette
{ a }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein Punkt.}
\faktvoraussetzung {Es seien \maabb {f} {T} {\R } {} und \maabb {g} {T} { \R } {} \definitionsverweis {Funktionen}{}{} derart, dass die \definitionsverweis {Grenzwerte}{}{} \mathkor {} {\operatorname{lim}_{ x \rightarrow a } \, f(x)} {und} {\operatorname{lim}_{ x \rightarrow a } \, g(x)} {} existieren.}
\faktuebergang {Dann gelten folgende Beziehungen.}
\faktfolgerung {\aufzaehlungdrei{Die Summe
\mathl{f+g}{} besitzt einen Grenzwert in $a$, und zwar ist
\mathdisp {\operatorname{lim}_{ x \rightarrow a } \, (f(x)+g(x)) = \operatorname{lim}_{ x \rightarrow a } \, f(x) + \operatorname{lim}_{ x \rightarrow a } \, g(x)} { . }
}{Das Produkt
\mathl{f \cdot g}{} besitzt einen Grenzwert in $a$, und zwar ist
\mathdisp {\operatorname{lim}_{ x \rightarrow a } \, (f(x) \cdot g(x)) = \operatorname{lim}_{ x \rightarrow a } \, f(x) \cdot \operatorname{lim}_{ x \rightarrow a } \, g(x)} { . }
}{Es sei
\mathl{g(x) \neq 0}{} für alle
\mathl{x \in T}{} und
\mathl{\operatorname{lim}_{ x \rightarrow a } \, g(x) \neq 0}{.} Dann besitzt der Quotient
\mathl{f/g}{} einen Grenzwert in $a$, und zwar ist
\mathdisp {\operatorname{lim}_{ x \rightarrow a } \, \frac{f(x)}{ g(x)} = \frac{ \operatorname{lim}_{ x \rightarrow a } \, f(x) }{ \operatorname{lim}_{ x \rightarrow a } \, g(x) }} { . }
}}
\faktzusatz {}
\faktzusatz {}

}
{

Dies ergibt sich direkt aus Lemma 8.1.

}


\inputfaktbeweis
{Reelle Zahlen/Teilmenge/Funktion/Grenzwert/Charakterisierungen/Fakt}
{Lemma}
{}
{

\faktsituation {Es sei
\mavergleichskette
{\vergleichskette
{ T }
{ \subseteq }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine Teilmenge und sei
\mavergleichskette
{\vergleichskette
{ a }
{ \in }{ \R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein Punkt.}
\faktvoraussetzung {Es sei \maabb {f} {T} {\R } {} eine \definitionsverweis {Funktion}{}{} und
\mathl{b \in \R}{.}}
\faktuebergang {Dann sind folgende Aussagen äquivalent.}
\faktfolgerung {\aufzaehlungzwei {Es ist
\mathdisp {\operatorname{lim}_{ x \rightarrow a } \, f(x) = b} { . }

} {Für jedes
\mathl{\epsilon >0}{} gibt es ein
\mathl{\delta >0}{} derart, dass für alle
\mathl{x \in T}{} mit
\mathl{d(x,a) \leq \delta}{} die Abschätzung
\mathl{d(f(x),b) \leq \epsilon}{} gilt. }}
\faktzusatz {}
\faktzusatz {}

}
{ Siehe Aufgabe 10.24. }


Für eine stetige Funktion \maabb {f} {T} {\R } {} folgt daraus, dass sie sich zu einer stetigen Funktion \maabb {\tilde{f}} {T \cup \{a\}} {\R } {} \zusatzklammer {durch
\mavergleichskettek
{\vergleichskettek
{ \tilde{f}(a) }
{ = }{ b }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {} {} genau dann fortsetzen lässt, wenn der Limes von $f$ in $a$ gleich $b$ ist.


<< | Kurs:Mathematik für Anwender (Osnabrück 2020-2021)/Teil I | >>

PDF-Version dieser Vorlesung

Arbeitsblatt zur Vorlesung (PDF)