Kurs:Wiederholertutorium Mathematik I (Osnabrück 2010)/Arbeitsblatt 7

Aus Wikiversity
Zur Navigation springen Zur Suche springen



Anwesenheitsaufgaben

Aufgabe

Sei eine Teilmenge von und . Wir definieren . Zeige die folgenden Aussagen:

  1. Falls offen ist, so ist abgeschlossen.
  2. Falls abgeschlossen ist, so ist offen.
  3. Die Umkehrungen der ersten beiden Aussagen sind falsch.


Aufgabe

Zeige, dass die Funktion , , gleichmäßig stetig ist.


Aufgabe

Sei ein metrischer Raum und eine Teilmenge. Wir definieren die Funktion , , wobei . Zeige, dass Lipschitz-stetig mit Konstante ist.


Aufgabe

Sei eine stetige Funktion mit der Eigenschaft . Zeige, dass mindestens einen Fixpunkt besitzt, d.h., es gibt ein mit .


Aufgabe

Zeige, dass auf ganz gleichmäßig stetig ist.




Hausaufgaben (Korrektur nur für Leute ohne Klausurberechtigung)

Aufgabe (4 Punkte)

Zeige, dass die Funktion , nicht gleichmäßig stetig ist.


Aufgabe (4 Punkte)

Es seien zwei stetige Funktionen mit der Eigenschaft, dass und gilt. Zeige, dass es ein gibt mit .



PDF-Version dieses Arbeitsblattes