Zum Inhalt springen

Lineare Abbildung/Körper/Definition/Erläuterungen/Bemerkung

Aus Wikiversity

Die erste Eigenschaft nennt man dabei die Additivität und die zweite Eigenschaft die Verträglichkeit mit Skalierung. Wenn man den Grundkörper betonen möchte, spricht man von Linearität. Die Identität , die Nullabbildung und die Inklusionen von Untervektorräumen sind die einfachsten Beispiele für lineare Abbildungen. Insgesamt gilt für eine lineare Abbildung die Verträglichkeit mit beliebigen Linearkombinationen, also die Beziehung

siehe Aufgabe.