Zum Inhalt springen

Lineare Algebra 1/Gemischte Satzabfrage/52/Aufgabe/Lösung

Aus Wikiversity


  1. Es sei ein Körper und

    ein inhomogenes lineares Gleichungssystem über und es sei

    das zugehörige homogene Gleichungssystem. Wenn eine Lösung des inhomogenen Systems und eine Lösung des homogenen Systems ist, so ist eine Lösung des inhomogenen Systems.
  2. Es sei ein Körper und ein -Vektorraum mit endlicher Dimension . Für Vektoren in sind folgende Eigenschaften äquivalent.
    1. bilden eine Basis von .
    2. bilden ein Erzeugendensystem von .
    3. sind linear unabhängig.
  3. In einem Polynomring über einem Körper ist jedes Ideal ein Hauptideal.