Matrizen/Lineares Gleichungssystem/Einführung/Textabschnitt
Ein lineares Gleichungssystem lässt sich am einfachsten mit Matrizen schreiben. Dies ermöglicht es, die Umformungen, die zur Lösung eines solchen Systems führen, durchzuführen, ohne immer die Variablen mitschleppen zu müssen. Matrizen (und der zugehörige Kalkül) sind recht einfache Objekte; sie können aber ganz unterschiedliche mathematische Objekte beschreiben (eine Familie von Spaltenvektoren, eine Familie von Zeilenvektoren, eine lineare Abbildung, eine Tabelle von Wechselwirkungen, eine zweistellige Relation, ein lineares Vektorfeld etc.), die man stets im Hinterkopf haben sollte, um vor Fehlinterpretationen geschützt zu sein.
Wir beschränken uns weitgehend auf den durchnummerierten Fall.
Zu jedem heißt , , die -te Zeile der Matrix, was man zumeist als ein Zeilentupel (oder einen Zeilenvektor)
schreibt. Zu jedem heißt , , die -te Spalte der Matrix, was man zumeist als ein Spaltentupel (oder einen Spaltenvektor)
schreibt. Die Elemente heißen die Einträge der Matrix. Zu heißt der Zeilenindex und der Spaltenindex des Eintrags. Man findet den Eintrag , indem man die -te Zeile mit der -ten Spalte kreuzt. Eine Matrix mit nennt man eine quadratische Matrix. Eine -Matrix ist einfach ein Spaltentupel (oder Spaltenvektor) der Länge , und eine -Matrix ist einfach ein Zeilentupel (oder Zeilenvektor) der Länge . Die Menge aller Matrizen mit Zeilen und Spalten (und mit Einträgen in ) wird mit bezeichnet, bei schreibt man .
Zwei Matrizen werden addiert, indem man sie komponentenweise addiert. Ebenso ist die Multiplikation einer Matrix mit einem Element (einem Skalar) komponentenweise definiert, also
und
Die Matrizenmultiplikation wird folgendermaßen definiert.
Eine Matrizenmultiplikation ist nur möglich, wenn die Spaltenanzahl der linken Matrix mit der Zeilenanzahl der rechten Matrix übereinstimmt. Als Merkregel kann man das Schema
verwenden, das Ergebnis ist eine -Matrix. Insbesondere kann man eine -Matrix mit einem Spaltenvektor der Länge (von rechts) multiplizieren, und erhält dabei einen Spaltenvektor der Länge . Die beiden soeben angeführten Matrizen kann man auch in der anderen Reihenfolge multiplizieren (was nicht immer möglich ist) und man erhält
Die Einheitsmatrix besitzt die Eigenschaft für eine beliebige -Matrix .
Wenn man eine -Matrix mit einem Spaltenvektor multipliziert, so erhält man
Damit lässt sich ein inhomogenes lineares Gleichungssystem mit dem Störvektor kurz als
schreiben. Die erlaubten Gleichungsumformungen durch Manipulationen an den Gleichungen, die die Lösungsmenge nicht ändern, können dann durch die entsprechenden Zeilenumformungen in der Matrix (unter Berücksichtigung der Störvektorseite) ersetzt werden. Man muss dann die Variablen nicht mitschleppen.