Zum Inhalt springen

Modallogik/K/Einführung/Textabschnitt

Aus Wikiversity


Eine Modallogik heißt eine -Modallogik, wenn das Axiomenschema

für beliebige Ausdrücke und die Ableitungsregel Nezessisierungsregel

aus folgt

für alle gilt.

Das Axiomenschema ist äquivalent zum Axiomenschema

siehe Aufgabe.


Man sagt, dass ein modallogischer Ausdruck aus dem -System ableitbar ist, wenn sich aus aussagenlogischen Tautologien und aus Instanzen des -Axioms mit Hilfe des Modus ponens oder der Nezessisierungsregel ergibt. Dafür schreibt man



In einer -Modallogik sind folgende Aussagen ableitbar.

  1. Aus

    folgt

  2. Aus

    folgt

(1). Nach der Nezessisierungsregel gilt

und nach dem -Axiom gilt

Durch Modus ponens ergibt sich

(2). Aus

folgt durch Kontraposition zunächst

und daraus nach Teil (1)

Erneutes kontraponieren ergibt

was

bedeutet.

(3). Aus der aussagenlogischen Tautologie

ergibt sich aus (1) direkt

(4). Aus der aussagenlogischen Tautologie

ergibt sich mit (1) zunächst

Aufgrund des -Axioms gilt

Der Kettenschluss liefert

was aussagenlogisch äquivalent zu

ist.

(5) ergibt sich aus der aussagenlogischen Tautologie

und Teil (1).


Die erste der eben bewiesenen Eigenschaften der -Modallogik bedeutet insbesondere, dass man in der Reichweite eines Notwendigkeitsoperators einen Ausdruck durch einen jeden aussagenlogisch äquivalenten Ausdruck ersetzen kann.