Orientierung auf Mannigfaltigkeit/Orientierbarkeit/Einführung/Textabschnitt
Es sei eine differenzierbare Mannigfaltigkeit. Eine Karte
mit und offen heißt orientiert, wenn der orientiert ist.
Wenn man einen Atlas aus orientierten Karten hat, so haben die Orientierungen auf den umgebenden Zahlenräumen , in denen die offenen Bilder der Karten liegen, erstmal nichts miteinander zu tun (obwohl man stets schreibt). Ein Zusammenhang zwischen den Orientierungen wird erst durch die beiden folgenden Begriffe formulierbar.
Es sei eine differenzierbare Mannigfaltigkeit und es seien und orientierte Karten. Dann heißt der zugehörige Kartenwechsel
orientierungstreu, wenn für jeden Punkt das totale Differential
orientierungstreu ist.
Eine differenzierbare Mannigfaltigkeit mit einem Atlas heißt orientiert, wenn jede Karte orientiert ist und wenn sämtliche Kartenwechsel orientierungstreu sind.
Bei einer orientierten Mannigfaltigkeit besitzt jeder Tangentialraum eine Orientierung. Man kann einfach eine beliebige Kartenumgebung (aus dem orientierten Atlas) wählen und die Orientierung auf
mittels nach transportieren. Wegen der Orientierungstreue der Kartenwechsel ist diese Orientierung unabhängig von der gewählten Kartenumgebung.
In einer orientierten Mannigfaltigkeit kann man auch zu zwei Basen in den Tangentialräumen zu zwei verschiedenen Punkten sagen, ob sie die gleiche Orientierung repräsentieren oder nicht. Dies ist der Fall, wenn beide Basen die Orientierung der Mannigfaltigkeit repräsentieren oder aber beide nicht.
Eine Mannigfaltigkeit heißt orientierbar, wenn sie diffeomorph zu einer orientierten Mannigfaltigkeit ist. D.h. wenn es einen Atlas gibt, der die gleiche differenzierbare Struktur definiert und der zusätzlich orientiert werden kann.