Produktring/Ideal/Hauptideal/Aufgabe

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Es seien kommutative Ringe und sei

der Produktring.

  1. Es seien

    Ideale. Zeige, dass die Produktmenge

    ein Ideal in ist.

  2. Zeige, dass jedes Ideal die Form

    mit Idealen besitzt.

  3. Sei

    ein Ideal in . Zeige, dass genau dann ein Hauptideal ist, wenn sämtliche Hauptideale sind.

  4. Zeige, dass genau dann ein Hauptidealring ist, wenn alle Hauptidealringe sind.