Radikalerweiterung/Cardonosche Formel/Bemerkung
Bei einer Radikalerweiterung entstehen die einzelnen einfachen Radikalerweiterungen durch die Hinzunahme von reinen Wurzelausdrücken. Dies gilt aber im Allgemeinen nicht für die Gesamterweiterung. Beispielsweise kann man eine Situation der Form
haben (alles spiele sich innerhalb von ab). In den Einzelschritten kommt eine reine Wurzel aus dem Vorgängerkörper hinzu, insgesamt entstehen dabei aber beliebig verschachtelte Wurzelausdrücke. Radikalerweiterungen sind dafür da, solche verschachtelten Wurzelausdrücke systematisch zu erfassen.
Wenn eine komplexe Zahl als Nullstelle eines normierten Polynoms mit Koeffizienten aus auftritt, so ist es eine wichtige Frage, ob man sie innerhalb einer Radikalerweiterung beschreiben kann. Die Formel von Cardano besagt insbesondere, dass man die Nullstellen einer kubischen Gleichung innerhalb einer Radikalerweiterung realisieren kann, und zwar braucht man dazu die dritten Einheitswurzeln, die Quadratwurzel und noch dritte Wurzeln von zuvor erzeugten Ausdrücken. Siehe auch Aufgabe.