Zum Inhalt springen

Riemannsche Fläche/Normiertes Polynom/Glattes und unverzweigtes Nullstellengebilde/Fakt/Beweis

Aus Wikiversity
Beweis

In den Punktes des unverzweigten Nullstellengebildes haben und (Ableitung nach ) keine gemeinsame Nullstelle. D.h. hat in diesen Punkten keine Nullstelle und daher handelt es sich insbesondere um einen glatten Punkt. Es bezeichne die offene Teilmenge von bestehend aus allen Punkten mit der Eigenschaft, dass alle Punkte darüber glatt sind. Dabei gilt , wobei die Menge aus Fakt  (4) bezeichnet. Wir betrachten die eingeschränkte Projektion . Hierbei ist als Teilmenge des glatten Nullstellengebildes eine riemannsche Fläche und die Abbildung ist endlich mit Blätterzahl . Nach Fakt ist genau dann überall unverzweigt, wenn die Faseranzahl gleich ist.