Topologische Gruppen/Kommutativ/Kurze exakte Sequenz/Lokal stetiger Schnitt/Garbensequenz/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

Es ist klar, dass ein Komplex von Garben von kommutativen Gruppen auf vorliegt. Die Injektivität links ist ebenfalls klar. Zur Exaktheit in der Mitte: Wenn zu einer offenen Menge eine stetige Abbildung die Eigenschaft besitzt, dass die Nullabbildung ist, so liegt das Bild von in . Da die induzierte Topologie von trägt, ist auch die Abbildung stetig. Zur Garbensurjektivität rechts: Es sei ein Punkt und

eine auf einer offenen Umgebung von definierte stetige Abbildung nach . Es sei . Nach Voraussetzung gibt es eine offene Umgebung und einen Schnitt mit . Wir betrachten

Dann ist (eingeschränkt auf ) ein stetiger Schnitt von , der unter auf abgebildet wird.