Zum Inhalt springen

Trigonometrische Funktionen/R/Inverse Funktionen/Analytische Eigenschaften/Textabschnitt

Aus Wikiversity


Die reelle Sinusfunktion

induziert eine bijektive, streng wachsende Funktion

und die reelle Kosinusfunktion induziert eine bijektive streng fallende Funktion

Beweis

Siehe Aufgabe.



Die reelle Tangensfunktion induziert eine bijektive, streng wachsende Funktion

und die reelle Kotangensfunktion induziert eine bijektive streng fallende Funktion

Beweis

Siehe Aufgabe.


Aufgrund der Bijektivität von Sinus, Kosinus, Tangens und Kotangens auf geeigneten Intervallen gibt es die folgenden Umkehrfunktionen.



Die Umkehrfunktion der reellen Sinusfunktion ist

und heißt Arkussinus.



Die Umkehrfunktion der reellen Kosinusfunktion ist

und heißt Arkuskosinus.

Der Arkustangens



Die Umkehrfunktion der reellen Tangensfunktion ist

und heißt Arkustangens.

Der Arkuskotangens



Die Umkehrfunktion der reellen Kotangensfunktion ist

und heißt Arkuskotangens.



Die inversen trigonometrischen Funktionen besitzen die folgenden Ableitungen.

Für den Arkustangens gilt beispielsweise nach Fakt