Zum Inhalt springen

Zahlbereich/3te Wurzel aus q/pm 1 mod 9/Kähler-Differential/Beispiel

Aus Wikiversity

Es sei eine Primzahl und mit der Ganzheitsring, vergleiche Fakt. Der Modul der Kähler-Differentiale wird als -Modul von und erzeugt. Wir behaupten, dass der Erzeuger überflüssig ist, obwohl er als Algebraerzeuger nicht überflüssig ist. Dabei gilt

Ferner ist unter Verwendung von Aufgabe

woraus wir

gewinnen. Schließlich ist

woraus wir

gewinnen. Wir können also verschiedene Vielfache von als Vielfache von ausdrücken. Wir betrachten das von den Vorfaktoren erzeugte Ideal in , also

Dieses Ideal enthält und Im Restklassenring wird also zu und wird zu

Somit enthält das Ideal die Zahlen und

Da und teilerfremd ist, enthält es auch die und somit gibt es auch eine Darstellung von als Vielfaches von .