Zahlbereich/Charakterisierung von Idealerzeugung mit Diskriminante/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

Zunächst sind wegen Fakt die Spuren zu Elementen aus ganzzahlig und somit sind auch die in Frage stehenden Diskriminanten ganzzahlig. Man kann also die Diskriminanten bzw. ihre Beträge untereinander der Größe nach vergleichen.

Es sei ein beliebiges Element. Wir haben zu zeigen, dass sich als eine -Linearkombination mit schreiben lässt, wenn die eine -Basis von mit minimalem Diskriminantenbetrag bilden. Es gibt eine eindeutige Darstellung

mit rationalen Zahlen . Sei angenommen, dass ein nicht ganzzahlig ist, wobei wir annehmen dürfen. Wir schreiben dann mit und einer rationalen Zahl (echt) zwischen und . Dann ist auch

eine -Basis von , die in liegt. Die Übergangsmatrix der beiden Basen ist

Nach Fakt gilt für die beiden Diskriminanten die Beziehung

Wegen und da die Diskriminanten nach Fakt nicht sind, ist dies ein Widerspruch zur Minimalität der Diskriminante.

Zur bewiesenen Aussage