Abgeschlossene Untermannigfaltigkeit/Volumenform/Kleinere Dimension/Nullmenge/Aufgabe

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Es sei eine -dimensionale differenzierbare Mannigfaltigkeit mit abzählbarer Topologie. Es sei eine positive Volumenform auf und es sei das durch diese Volumenform definierte Maß auf . Zeige, dass dann jede abgeschlossene Untermannigfaltigkeit der Dimension eine Nullmenge

ist.