Es sei ein
-Vektorraum
über einem
Körper
. Die
allgemeine lineare Gruppe
operiert in natürlicher Weise
linear
auf . Die Elemente
sind ja definiert als
-Automorphismen
von in sich und somit ist die Abbildung
-
wohldefiniert. Da die
Verknüpfung
auf einfach die
Hintereinanderschaltung von Abbildungen
ist, ergibt sich sofort
-
sodass es sich um eine Gruppenoperation handelt. Diese Operation besitzt nur zwei
Bahnen,
nämlich den Nullpunkt
und ,
da es zu zwei von verschiedenen Vektoren
und
stets einen Automorphismus gibt, der in überführt.