Diffeomorphismus/Transformationsformel/Integralformel für Quader/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

Da stetig differenzierbar ist, ist die Abbildung

stetig und daher nach Fakt gleichmäßig stetig auf dem kompakten Quader . D.h. zu jedem gibt es ein mit für alle . Dann gibt es auch ein derart, dass für alle kompakten Teilquader mit maximaler Kantenlänge das Bild in einem abgeschlossenen Intervall der Länge liegt. Damit ist die Differenz zwischen dem Minimum und dem Maximum von maximal gleich .

Sei gegeben. Wir unterteilen in kompakte Teilquader, indem wir jede Quaderkante in gleichlange Teile unterteilen, und wählen dabei so groß, dass die entstehenden Teilquader die oben beschriebene Eigenschaft haben. Es sei eine Indexmenge zu dieser Unterteilung, es ist also und damit . Diese beiden Vereinigungen sind nicht disjunkt, jedoch sind die Schnittmengen der Quader nach Fakt und die Schnittmengen der als Bilder von Quaderseiten nach Fakt Nullmengen. Wir wenden Fakt auf die Teilquader an und erhalten

Dabei ist die Differenz zwischen links und rechts durch

beschränkt, kann also durch beliebig klein gemacht werden. Die gleichen Abschätzungen gelten wegen der Monotonie des Integrals auch für das Integral , so dass

gilt.