Eigenvektor/Dualraum/Dualbasis/Aufgabe

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Es sei

ein Endomorphismus auf einem endlichdimensionalen -Vektorraum und sei ein Eigenvektor zu zum Eigenwert . Es sei

die duale Abbildung zu . Wir betrachten Basen von der Form mit der Dualbasis . Man gebe Beispiele für das folgende Verhalten.

a) ist Eigenvektor von zum Eigenwert unabhängig von .

b) ist Eigenvektor von zum Eigenwert bezüglich einer Basis , aber nicht bezüglich einer Basis .

c) ist bezüglich keiner Basis ein Eigenvektor von .
Zur Lösung, Alternative Lösung erstellen