Elementare und algebraische Zahlentheorie/9/Klausur mit Lösungen/latex

Aus Wikiversity

%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{ . 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}

%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 5 }

\renewcommand{\avier}{ 5 }

\renewcommand{\afuenf}{ 2 }

\renewcommand{\asechs}{ 1 }

\renewcommand{\asieben}{ 0 }

\renewcommand{\aacht}{ 4 }

\renewcommand{\aneun}{ 4 }

\renewcommand{\azehn}{ 4 }

\renewcommand{\aelf}{ 0 }

\renewcommand{\azwoelf}{ 3 }

\renewcommand{\adreizehn}{ 4 }

\renewcommand{\avierzehn}{ 8 }

\renewcommand{\afuenfzehn}{ 0 }

\renewcommand{\asechzehn}{ 0 }

\renewcommand{\asiebzehn}{ 46 }

\renewcommand{\aachtzehn}{ }

\renewcommand{\aneunzehn}{ }

\renewcommand{\azwanzig}{ }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabellesechzehn

\klausurnote

\newpage


\setcounter{section}{0}





\inputaufgabepunkteloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Das von einer Familie von Elementen
\mathbed {a_j \in R} {}
{j \in J} {}
{} {} {} {,} in einem \definitionsverweis {kommutativen Ring}{}{} $R$ \stichwort {erzeugte Ideal} {.}

}{Ein \stichwort {quadratischer Rest} {.}

}{Eine \stichwort {endliche} {} Körpererweiterung
\mathl{K \subseteq L}{.}

}{Ein \stichwort {normaler} {} Integritätsbereich.

}{\stichwort {Reell-quadratische} {} und \stichwort {imaginär-quadratische} {} Zahlbereiche.

}{Die \stichwort {Grundmasche} {} zu einem Gitter
\mavergleichskette
{\vergleichskette
{\Gamma }
{ \subseteq }{\R^n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }

}
{

\aufzaehlungsechs{Das von den $a_j$ erzeugte Ideal besteht aus allen \zusatzklammer {endlichen} {} {} Linearkombinationen
\mathdisp {\sum_{j \in J_0} r_j a_j} { , }
wobei
\mathl{J_0 \subseteq J}{} eine endliche Teilmenge und
\mathl{r_j \in R}{} ist. }{Eine ganze Zahl $k$ heißt \stichwort {quadratischer Rest} {} modulo $n$, wenn es eine Zahl $x$ mit
\mavergleichskettedisp
{\vergleichskette
{x^2 }
{ =} { k \mod n }
{ } { }
{ } { }
{ } { }
} {}{}{} gibt. }{Eine \definitionsverweis {Körpererweiterung}{}{}
\mathl{K \subseteq L}{} heißt endlich, wenn $L$ ein \definitionsverweis {endlichdimensionaler Vektorraum}{}{} über $K$ ist. }{Ein \definitionsverweis {Integritätsbereich}{}{} heißt normal, wenn er \definitionsverweis {ganz-abgeschlossen}{}{} in seinem \definitionsverweis {Quotientenkörper}{}{} ist. }{Der quadratische Zahlbereich $A_D$ heißt reell-quadratisch, wenn $D$ positiv ist, und imaginär-quadratisch, wenn $D$ negativ ist. }{Zu einem durch \definitionsverweis {linear unabhängige}{}{} Vektoren
\mathl{v_1 , \ldots , v_n}{} gegebenen \definitionsverweis {Gitter}{}{} bezeichnet man die \definitionsverweis {konvexe Hülle}{}{} der Vektoren
\mathl{\epsilon_1 v_1 + \cdots + \epsilon_n v_n}{} mit
\mathl{\epsilon_i \in \{0,1\}}{} als die Grundmasche des Gitters. }


}





\inputaufgabepunkteloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Der Satz über die Struktur der Einheitengruppe von
\mathl{\Z/(p)}{} für eine Primzahl $p$.}{Der \stichwort {Satz von Euklid} {} über Primzahlen.}{Der Satz über das Zerlegungsverhalten von Primzahlen in einem quadratischen Zahlbereich.}

}
{

\aufzaehlungdrei{Die \definitionsverweis {Einheitengruppe}{}{}
\mathl{{ \left( \Z/(p) \right) }^{\times}}{} ist \definitionsverweis {zyklisch}{}{} mit der \definitionsverweis {Ordnung}{}{}
\mathl{p-1}{.}}{Es gibt unendlich viele Primzahlen.}{Es sei $D \neq 0,1$ eine quadratfreie Zahl und $A_D$ der zugehörige quadratische Zahlbereich. Dann gibt es für eine Primzahl $p$ die folgenden drei Möglichkeiten: \aufzaehlungdrei{$p$ ist prim in $A_D$. }{Es gibt ein Primideal ${\mathfrak p}$ in $A_D$ derart, dass
\mathl{(p)= {\mathfrak p}^2}{} ist. }{Es gibt ein Primideal ${\mathfrak p}$ in $A_D$ derart, dass
\mathl{(p)= {\mathfrak p} \overline{ {\mathfrak p} }}{} ist mit
\mathl{{\mathfrak p} \neq \overline{ {\mathfrak p}}}{.} }}


}





\inputaufgabepunkteloesung
{5}
{

Zeige, dass die \definitionsverweis {Untergruppen}{}{} von $\Z $ genau die Teilmengen der Form
\mavergleichskettedisp
{\vergleichskette
{ \Z d }
{ =} { { \left\{ kd \mid k \in \Z \right\} } }
{ } { }
{ } { }
{ } { }
} {}{}{} mit einer eindeutig bestimmten nicht-negativen Zahl $d$ sind.

}
{

Eine Teilmenge der Form $\Z d$ ist aufgrund der Distributivgesetze eine Untergruppe. Es sei umgekehrt
\mavergleichskette
{\vergleichskette
{H }
{ \subseteq }{ \Z }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine Untergruppe. Bei
\mavergleichskette
{\vergleichskette
{H }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} kann man
\mavergleichskette
{\vergleichskette
{d }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} nehmen, so dass wir voraussetzen dürfen, dass $H$ neben $0$ noch mindestens ein weiteres Element $x$ enthält. Wenn $x$ negativ ist, so muss die Untergruppe $H$ auch das Negative davon, also $-x$ enthalten, welches positiv ist. D.h. $H$ enthält auch positive Zahlen. Es sei nun $d$ die kleinste positive Zahl aus $H$. Wir behaupten
\mavergleichskette
{\vergleichskette
{H }
{ = }{\Z d }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Dabei ist die Inklusion
\mavergleichskette
{\vergleichskette
{ \Z d }
{ \subseteq }{H }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} klar, da mit $d$ alle \zusatzklammer {positiven und negativen} {} {} Vielfachen von $d$ dazugehören müssen. Für die umgekehrte Inklusion sei
\mavergleichskette
{\vergleichskette
{h }
{ \in }{H }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} beliebig. Nach der Division mit Rest gilt
\mathdisp {h=qd+r \text{ mit } 0 \leq r < d} { . }
Wegen \mathkon { h \in H } { und } { qd \in H }{ } ist auch
\mavergleichskette
{\vergleichskette
{ r }
{ = }{ h-qd }
{ \in }{ H }
{ }{ }
{ }{ }
} {}{}{.} Nach der Wahl von $d$ muss wegen
\mavergleichskette
{\vergleichskette
{r }
{ < }{d }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gelten:
\mavergleichskette
{\vergleichskette
{r }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} Dies bedeutet
\mavergleichskette
{\vergleichskette
{h }
{ = }{qd }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und damit
\mavergleichskette
{\vergleichskette
{h }
{ \in }{\Z d }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} also
\mavergleichskette
{\vergleichskette
{H }
{ \subseteq }{\Z d }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}


}





\inputaufgabepunkteloesung
{5 (1+3+1)}
{

\aufzaehlungdrei{Gibt es eine Primzahl $x$ derart, dass auch
\mathl{x+6}{,}
\mathl{x+12}{,}
\mathl{x+18}{} und
\mathl{x+24}{} Primzahlen sind? }{Gibt es mehr als eine Primzahl $x$ derart, dass auch
\mathl{x+6}{,}
\mathl{x+12}{,}
\mathl{x+18}{} und
\mathl{x+24}{} Primzahlen sind? }{Gibt es mehr als eine Primzahl $x$ derart, dass auch
\mathl{x+6}{,}
\mathl{x+12}{} und
\mathl{x+18}{} Primzahlen sind? }

}
{

\aufzaehlungdrei{Die Zahlen
\mathl{5,11,17,23,29}{} sind Primzahlen. }{Wir zeigen, dass es außer dem soeben genannten Beispiel kein weiteres Fünfertupel mit der besagten Eigenschaft gibt. Wir betrachten die Reste von $x, x+6, x+12, x+18,x+24$ bei Division durch $5$. Wenn $r$ der Rest von $x$ ist, so sind die anderen Reste gleich
\mathl{r+1, r+2, r+3,r+4}{.} Somit muss eine der fünf Zahlen den Rest $0$ besitzen, also ein Vielfaches von $5$ sein. Da
\mavergleichskette
{\vergleichskette
{x }
{ = }{5 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ausgeschlossen ist, können nicht alle fünf Zahlen Primzahlen sein. }{Die Zahlen
\mathl{41,47,53,59}{} sind Primzahlen, es gibt also weitere Vierertupel mit der besagten Eigenschaft. }


}





\inputaufgabepunkteloesung
{2 (1+1)}
{

a) Berechne den \definitionsverweis {größten gemeinsamen Teiler}{}{} der ganzen Zahlen \mathkor {} {2 \cdot 3^2 \cdot 7^4} {und} {2^4 \cdot 3^3 \cdot 5^{11} \cdot 7} {.}

b) Berechne den \definitionsverweis {größten gemeinsamen Teiler}{}{} der ganzen Zahlen \mathkor {} {2 \cdot 3^2 \cdot 6 \cdot 7} {und} {2^2 \cdot 3^3 \cdot 5^{4}} {.}

}
{

a) Beide Zahlen liegen in ihrer Primfaktorzerlegung vor, daher ist nach Fakt der größte gemeinsame Teiler gleich
\mavergleichskettedisp
{\vergleichskette
{2 \cdot 3^2 \cdot 7 }
{ =} {126 }
{ } { }
{ } { }
{ } { }
} {}{}{.}

b) Es ist
\mavergleichskettedisp
{\vergleichskette
{6 }
{ =} {2\cdot 3 }
{ } { }
{ } { }
{ } { }
} {}{}{,} daher lautet die Primfaktorzerlegung der ersten Zahl
\mathdisp {2^2 \cdot 3^3 \cdot 7} { }
und somit ist der größte gemeinsame Teiler gleich
\mavergleichskettedisp
{\vergleichskette
{ 2^2 \cdot 3^3 }
{ =} { 4 \cdot 27 }
{ =} {108 }
{ } { }
{ } { }
} {}{}{.}


}





\inputaufgabepunkteloesung
{1}
{

Bestimme die \definitionsverweis {Primfaktorzerlegung}{}{} von $1728$.

}
{

Es ist
\mavergleichskettedisp
{\vergleichskette
{1728 }
{ =} {2^6 \cdot 3^3 }
{ } { }
{ } { }
{ } { }
} {}{}{.}


}





\inputaufgabepunkteloesung
{0}
{

}
{/Aufgabe/Lösung }





\inputaufgabepunkteloesung
{4 (2+2)}
{

a) Man gebe explizit eine natürliche Zahl
\mathl{n \geq 100 000}{} an, die keinen Primteiler
\mathl{\leq 20}{} besitzt.

b) Es sei
\mathl{K= \Z/(3)}{.} Man gebe explizit ein normiertes Polynom
\mathl{F \in K[X]}{} vom Grad $\geq 9$ an, das keinen Primteiler vom Grad $\leq 2$ besitzt.

}
{

a) $23$ ist eine Primzahl, und
\mavergleichskettedisp
{\vergleichskette
{23 \cdot 23 }
{ =} { 529 }
{ } { }
{ } { }
{ } { }
} {}{}{} und somit ist
\mavergleichskettedisp
{\vergleichskette
{23^4 }
{ =} {529 \cdot 529 }
{ =} {279841 }
{ } { }
{ } { }
} {}{}{} ein Beispiel.

b) Das Polynom $X^3 +2$ hat keine Nullstelle in
\mathl{\Z/(3)}{} und ist somit irreduzibel. Wir berechnen
\mavergleichskettedisp
{\vergleichskette
{ { \left( X^3 +2 \right) }^3 }
{ =} { X^9 + 2 }
{ } { }
{ } { }
{ } { }
} {}{}{} und dies ist ein Beispiel der gesuchten Art.


}





\inputaufgabepunkteloesung
{4}
{

Berechne mit Hilfe des quadratischen Reziprozitätsgesetzes und seiner Ergänzungssätze das Legendre-Symbol


\mathdisp {\left( \frac{ 1117 }{ 1861 }\right)} { }
und bestimme, ob $1117$ ein Quadratrest modulo
\mathl{1861}{} ist oder nicht \zusatzklammer {$1861$ ist eine Primzahl} {} {.}

}
{

Wir berechnen Schritt für Schritt das Legendre-Symbol \zusatzklammer {wobei es sich in Zwischenschritten um das Jacobi-Symbol handeln könnte} {} {.}
\mavergleichskettealign
{\vergleichskettealign
{ \left( \frac{ 1117 }{ 1861 }\right) }
{ =} { \left( \frac{ 1861 }{ 1117 }\right) }
{ =} { \left( \frac{ 744 }{ 1117 }\right) }
{ =} { \left( \frac{ 2^3 }{ 1117 }\right) \left( \frac{ 3 }{ 1117 }\right) \left( \frac{ 31 }{ 1117 }\right) }
{ =} { (- 1 ) \left( \frac{ 1117 }{ 3 }\right) \left( \frac{ 1117 }{ 31 }\right) }
} {
\vergleichskettefortsetzungalign
{ =} {(- 1 ) \left( \frac{ 1 }{ 3 }\right) \left( \frac{ 1 }{ 31 }\right) }
{ =} {-1 }
{ } {}
{ } {}
} {}{.} Also ist $1117$ kein Quadratrest modulo $1861$


}





\inputaufgabepunkteloesung
{4}
{

Bestimme, ob die \definitionsverweis {Abbildung}{}{} \maabbeledisp {} {\Z^3} { \Q } {(m,n,k)} { 2^m \cdot 3^n \cdot 5^k } {,} \definitionsverweis {injektiv}{}{} und ob sie \definitionsverweis {surjektiv}{}{} ist.

}
{

Seien \mathkor {} {(m,n,k)} {und} {(a,b,c)} {} aus $\Z^3$ gegeben, die unter $\varphi$ auf das gleiche Element abgebildet werden. Dann ist
\mavergleichskettedisp
{\vergleichskette
{2^m \cdot 3^n \cdot 5^k }
{ =} {2^a \cdot 3^b \cdot 5^c }
{ } { }
{ } { }
{ } { }
} {}{}{.} Durch beidseitige Multiplikation mit
\mathl{2^r\cdot 3^s \cdot 5^t}{} mit
\mathl{r,s,t}{} hinreichend groß kann man erreichen, dass alle Exponenten positiv sind. Wegen der Eindeutigkeit der Primfaktorzerlegung und da $2,3,5$ Primzahlen sind, folgt, dass die Exponenten links und rechts übereinstimmen. Also ist
\mavergleichskettedisp
{\vergleichskette
{(m,n,k) }
{ =} {(a,b,c) }
{ } { }
{ } { }
{ } { }
} {}{}{} und die Abbildung ist injektiv.

Die Abbildung ist nicht surjektiv, da beispielsweise $7$ nicht im Bild liegt. Wäre nämlich
\mavergleichskettedisp
{\vergleichskette
{7 }
{ =} { 2^m \cdot 3^n \cdot 5^k }
{ } { }
{ } { }
{ } { }
} {}{}{,} so könnte man die negativen Exponenten der rechten Seite nach links bringen und es würde sich ein Widerspruch zur eindeutigen Primfaktorzerlegung ergeben.


}





\inputaufgabepunkteloesung
{0}
{

}
{/Aufgabe/Lösung }





\inputaufgabepunkteloesung
{3}
{

Beschreibe den Körper mit acht Elementen $\mathbb F_8$ als einen Restklassenkörper von
\mathl{\Z/(2)[X]}{.} Man gebe eine primitive Einheit in $\mathbb F_8$ an.

}
{

Wir brauchen ein irreduzibles Polynom vom Grad drei in $\Z/(2)[X]$. Bei Grad drei kann man die Irreduzibilität dadurch nachweisen, dass keine Nullstelle vorliegt. Betrachten wir
\mathdisp {F=X^3+X+1} { . }
Weder $0$ noch $1$ sind Nullstellen, daher ist das Polynom irreduzibel und daher ist
\mathdisp {K=\Z/(2)[X]/( X^3+X+1)} { }
ein Körper mit $8$ Elementen.

Da es in ${\mathbb F}_8$ genau $7$ Einheiten gibt, und die Einheiten eine zyklische Gruppe bilden, ist jede Einheit außer $1$ primitiv. Beispielsweise ist daher die Restklasse von $X$ in $K$ primitiv.


}





\inputaufgabepunkteloesung
{4}
{

Zeige, dass für
\mavergleichskette
{\vergleichskette
{n }
{ \geq }{2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Fakultät
\mathl{n!}{} keine Quadratzahl ist.

}
{Fakultät/Kein Quadrat/Aufgabe/Lösung }





\inputaufgabepunkteloesung
{8}
{

Es sei
\mathl{\Q \subseteq L}{} eine \definitionsverweis {endliche Körpererweiterung}{}{} vom Grad $n$ und sei $R$ der zugehörige Zahlbereich. Es sei ${\mathfrak a}$ ein von $0$ verschiedenes Ideal in $R$. Es seien
\mathl{b_1 , \ldots , b_n \in {\mathfrak a}}{} Elemente, die eine $\Q$-\definitionsverweis {Basis}{}{} von $L$ bilden und für die der Betrag der Diskriminante


\mathdisp {\triangle(b_1 , \ldots , b_n)} { }
unter all diesen Basen aus ${\mathfrak a}$ minimal sei.

Zeige, dass dann
\mavergleichskettedisp
{\vergleichskette
{ {\mathfrak a} }
{ =} { \Z b_1 + \cdots + \Z b_n }
{ } { }
{ } { }
{ } { }
} {}{}{} ist.

}
{

Zunächst sind wegen Fakt die Spuren zu Elementen aus $R$ ganzzahlig und somit sind auch die in Frage stehenden Diskriminanten ganzzahlig. Man kann also die Diskriminanten bzw. ihre Beträge untereinander der Größe nach vergleichen.

Es sei
\mavergleichskette
{\vergleichskette
{f }
{ \in }{{\mathfrak a} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein beliebiges Element. Wir haben zu zeigen, dass sich $f$ als eine $\Z$-Linearkombination
\mavergleichskette
{\vergleichskette
{f }
{ = }{ k_1b_1 + \cdots + k_nb_n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{k_i }
{ \in }{\Z }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} schreiben lässt, wenn die
\mavergleichskette
{\vergleichskette
{ b_1 , \ldots , b_n }
{ \in }{ {\mathfrak a} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine $\Q$-Basis von $L$ mit minimalem Diskriminantenbetrag bilden. Es gibt eine eindeutige Darstellung
\mavergleichskettedisp
{\vergleichskette
{f }
{ =} { q_1b_1 + \cdots + q_nb_n }
{ } { }
{ } { }
{ } { }
} {}{}{} mit rationalen Zahlen
\mavergleichskette
{\vergleichskette
{q_i }
{ \in }{\Q }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Es sei angenommen, dass ein $q_i$ nicht ganzzahlig ist, wobei wir
\mavergleichskette
{\vergleichskette
{i }
{ = }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} annehmen dürfen. Wir schreiben dann
\mavergleichskette
{\vergleichskette
{q_1 }
{ = }{k + \delta }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{k }
{ \in }{\Z }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und einer rationalen Zahl $\delta$ \zusatzklammer {echt} {} {} zwischen $0$ und $1$. Dann ist auch
\mathdisp {c_1 = f-kb_1 = \delta b_1 + \sum_{i=2}^n q_ib_i,\, b_2 , \ldots , b_n} { }
eine $\Q$-Basis von $L$, die in ${\mathfrak a}$ liegt. Die Übergangsmatrix der beiden Basen ist
\mavergleichskettedisp
{\vergleichskette
{T }
{ =} { \begin{pmatrix} \delta & q_2 & q_3 & \cdots & q_n \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 &0 &0 & \cdots & 1 \end{pmatrix} }
{ } { }
{ } { }
{ } { }
} {}{}{.} Nach Fakt gilt für die beiden Diskriminanten die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ \triangle (c_1,b_2 , \ldots , b_n) }
{ =} {(\det(T))^2 \triangle (b_1,b_2 , \ldots , b_n) }
{ } { }
{ } { }
{ } { }
} {}{}{.} Wegen
\mavergleichskette
{\vergleichskette
{ (\det(T))^2 }
{ = }{\delta ^2 }
{ < }{1 }
{ }{ }
{ }{ }
} {}{}{} und da die Diskriminanten nach Fakt nicht $0$ sind, ist dies ein Widerspruch zur Minimalität der Diskriminante.


}





\inputaufgabepunkteloesung
{0}
{

}
{/Aufgabe/Lösung }





\inputaufgabepunkteloesung
{0}
{

}
{/Aufgabe/Lösung }