Zum Inhalt springen

Endliche Permutationsgruppe/Auflösbarkeitseigenschaften/Textabschnitt

Aus Wikiversity


Für

sind die Permutationsgruppen auflösbar.

Beweis

Siehe Aufgabe.



Für

sind die Permutationsgruppen nicht auflösbar.

Wir betrachten eine Filtrierung

derart, dass die Normalteiler sind mit kommutativen Restklassengruppen. Wir werden zeigen, dass jedes sämtliche Dreierzykel (also Permutationen, bei denen drei Elemente zyklisch vertauscht werden, und alle übrigen festgelassen werden), enthält. Daher kann diese Filtrierung nicht bei der trivialen Gruppe enden, also ist . Die Aussage über die Dreierzykel beweisen wir durch absteigende Induktion, wobei der Fall klar ist. Es sei also vorausgesetzt, dass alle Dreierzykel enthält. Es sei ein Dreierzyklus (mit verschiedenen Elementen .) Wegen gibt es noch zwei weitere Elemente , die von und untereinander verschieden sind. Nach Induktionsvoraussetzung gehören die Dreierzykel

zu . Eine elementare Überlegung zeigt

Dieses Element wird unter der Restklassenabbildung

auf das neutrale Element abgebildet, da ja die Restklassengruppe kommutativ ist. Also ist .