Endliche Symmetriegruppe/Tetraeder aus numerischer Bedingung/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

Nach Voraussetzung gibt es drei Halbachsenklassen der Ordnung und , ihre Elementanzahl ist daher und . Betrachten wir eine Halbachsenklasse der Ordnung mit ihren vier äquivalenten Halbachsen und den zugehörigen Gruppenhomomorphismus

Sei eine Dritteldrehung um eine Halbachse . Sie lässt fest und bewirkt eine Permutation der drei anderen Halbachsen in der Klasse. Diese Permutation kann nicht die Identität sein, da sonst mindestens zwei Achsen fest ließe und damit die

(Raum)-Identität wäre. Da die Ordnung besitzt, muss diese Permutation ein Dreierzykel sein. Insbesondere gehören die vier Halbachsen zu verschiedenen Achsen, und die Doppeldrehung bewirkt den anderen Dreierzykel. Da man diese Überlegung mit jeder der vier Halbachsen aus anstellen kann, sieht man, dass sämtliche Dreierzykel der Permutationsgruppe der vier Halbachsen bewirkt. Das Bild des Gruppenhomomorphismus ist daher genau die alternierende Gruppe und damit ist . Diese ist nach Aufgabe isomorph zur Tetraedergruppe.