Zum Inhalt springen

Fundamentalsatz der Algebra/Nichtkonstantes Polynom/Nullstelle/Fakt/Beweis/Aufgabe/Lösung

Aus Wikiversity


Es sei ein nichtkonstantes Polynom. Aufgrund von Fakt gibt es ein mit für alle . Wir müssen zeigen, dass dieses Betragsminimum ist. Wir nehmen also an, dass ist, und müssen dann ein finden, an dem der Betrag des Polynoms kleiner wird. Durch Verschieben (d.h. indem wir die Situation in der neuen Variablen betrachten) können wir annehmen, dass das Minimum an der Stelle angenommen wird, und durch Division durch können wir annehmen, dass das Polynom im Nullpunkt den Wert besitzt. D.h. wir können annehmen, dass ein Polynom

mit und vorliegt, das im Nullpunkt das Betragsminimum annimmt. Wegen Fakt gibt es ein mit . Wir setzen (das ist eine Variablenstreckung). In der neuen Variablen erhalten wir ein Polynom der Form

das nach wie vor im Nullpunkt das Betragsminimum annimmt (hierbei ist ein Polynom). Aufgrund von Fakt gibt es ein mit für alle . Für reelles mit gilt

Wir haben also Stellen gefunden, wo der Betrag des Polynoms einen kleineren Wert annimmt, ein Widerspruch.