Zum Inhalt springen

Funktion/R/Grenzwert/Epsilon/Einführung/Textabschnitt

Aus Wikiversity

Funktionen sind häufig in bestimmten Punkten nicht definiert, beispielsweise, weil die verwendeten Funktionsterme nicht definiert sind. Es macht aber einen Unterschied, ob nur die gewählte Funktionsvorschrift in diesem Punkt nicht definiert ist, es aber eine sinnvolle (stetige) Fortsetzung gibt, oder ob die Funktion selbst prinzipiell nicht sinnvoll fortsetzbar ist (weil sie beispielsweise einen Pol oder ein chaotischeres Verhalten besitzt). Die folgende Begriffsbildung wird vor allem für die Definition der Differenzierbarkeit wichtig werden (besitzen die Differenzenquotienten einen sinnvollen Limes, der dann der Differentialquotient heißt).


Es sei eine Teilmenge und sei ein Punkt. Es sei

eine Funktion. Dann heißt Grenzwert (oder Limes) von in , wenn es zu jedem ein derart gibt, dass für jedes aus

die Abschätzung

folgt. In diesem Fall schreibt man

Dieser Begriff ist eigentlich nur dann sinnvoll, wenn es überhaupt Folgen in gibt, die gegen konvergieren. Eine typische Situation ist die folgende: Es sei ein Intervall, sei ein Punkt darin und es sei . Die Funktion sei auf , aber nicht im Punkt definiert, und es geht um die Frage, inwiefern man zu einer sinnvollen Funktion auf ganz fortsetzen kann. Dabei soll durch bestimmt sein.



Es sei eine Teilmenge und sei ein Punkt. Es sei eine Funktion und . Dann sind folgende Aussagen äquivalent.

  1. Es ist
  2. Für jede Folge in , die gegen konvergiert, konvergiert auch die Bildfolge gegen .

Beweis

Siehe Aufgabe.


Für eine stetige Funktion folgt daraus, dass sie sich zu einer stetigen Funktion (durch ) genau dann fortsetzen lässt, wenn der Limes von in gleich ist.



Es sei eine Teilmenge und sei ein Punkt. Es seien und Funktionen derart, dass die Grenzwerte und existieren. Dann gelten folgende Beziehungen.

  1. Die Summe besitzt einen Grenzwert in , und zwar ist
  2. Das Produkt besitzt einen Grenzwert in , und zwar ist
  3. Es sei für alle und . Dann besitzt der Quotient einen Grenzwert in , und zwar ist

Dies ergibt sich aus Fakt und aus Fakt.



Wir betrachten den Limes

wobei , ist. Für ist der Ausdruck nicht definiert, und aus dem Ausdruck ist nicht direkt ablesbar, ob der Grenzwert existiert und welchen Wert er annimmt. Man kann den Ausdruck aber mit erweitern, und erhält dann

Aufgrund der Rechenregeln für Grenzwerte können wir den Grenzwert von Zähler und Nenner ausrechnen, wobei wir im Nenner die Stetigkeit der Quadratwurzel gemäß Aufgabe verwenden, und es ergibt sich insgesamt .