Ganzer Ringhomomorphismus/Going up/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

Wir betrachten die injektive Abbildung

die nach wie vor ganz ist. Wir können also annehmen, dass eine ganze Erweiterung von Integritätsbereichen vorliegt und müssen ein Primideal finden, das auf ein vorgegebenes Primideal runterschneidet. Wir lokalisieren an und an , wobei die induzierte Abbildung

nach wie vor ganz ist. Wir können also annehmen, dass ein lokaler Integritätsbereich ist und eine ganze Erweiterung. Wir suchen ein Primideal aus , das auf das maximale Ideal herunterschneidet.  Nehmen wir an, dass die Faser über leer ist. Dann ist nach Fakt das Erweiterungsideal gleich dem Einheitsideal. Dann gibt es Elemente und mit . Diese Gleichung gilt auch im Unterring . Die Erweiterung ist endlich erzeugt und ganz, also nach Fakt sogar endlich. Es ist und damit . Aus dem Lemma von Nakayama folgt daraus , ein Widerspruch.

Zur bewiesenen Aussage