Zum Inhalt springen

Gitter/Komplexe Zahlen/Untergitter/Isogenie/Charakterisierung/Fakt/Beweis

Aus Wikiversity
Beweis

Von (1) nach (2), (3). Nach Fakt können wir durch ersetzen, da dies den Quotienten mit seiner holomorphen Struktur nicht ändert. Die Aussage (2) und (3) folgen somit aus Fakt und Fakt. Aus (2) bzw. (3) folgt direkt (4). Es sei also (4) erfüllt. Wir betrachten den zusammengesetzten holomorphen Gruppenhomomorphismus

Der Kern dieser Abbildung umfasst . Nach Fakt besitzt diese Gesamtabbildung eine Faktorisierung

mit einer komplexen Zahl . Somit gilt und wegen der Nichtkonstanz ist .