Kommutative Ringtheorie/Hilbertscher Basissatz/Textabschnitt

Aus Wikiversity


Satz  

Es sei ein noetherscher Ring.

Dann ist auch der Polynomring noethersch.

Beweis  

Es sei ein Ideal im Polynomring . Zu definieren wir ein Ideal in durch

Das Menge besteht also aus allen Leitkoeffizienten von Polynomen vom Grad aus . Es handelt sich dabei offensichtlich um Ideale in (wobei wir hier als Leitkoeffizient zulassen). Ferner ist , da man ja ein Polynom vom Grad mit Leitkoeffizient mit der Variablen multiplizieren kann, um ein Polynom vom Grad zu erhalten, das wieder als Leitkoeffizienten besitzt. Da noethersch ist, muss diese aufsteigende Idealkette stationär werden; sei so, dass ist.

Zu jedem sei nun ein endliches Erzeugendensystem, und es seien

zugehörige Polynome aus (die es nach Definition der geben muss).

Wir behaupten, dass von allen erzeugt wird. Dazu beweisen wir für jedes durch Induktion über den Grad von , dass es als Linearkombination mit diesen darstellbar ist. Für konstant, also , ist dies klar. Es sei nun der Grad von gleich und die Aussage sei für kleineren Grad bewiesen. Wir schreiben

Es ist und damit kann man als -Linearkombination der , schreiben. Bei kann man sogar als -Linearkombination der , schreiben, sagen wir . Dann ist und hat einen kleineren Grad, so dass man darauf die Induktionsvoraussetzung anwenden kann. Bei ist

Damit gehört

ebenfalls zu und hat einen kleineren Grad, so dass man wieder die Induktionsvoraussetzung anwenden kann.



Korollar  

Es sei ein noetherscher Ring.

Dann ist auch noethersch.

Beweis  

Dies folgt durch induktive Anwendung des Hilbertschen Basissatzes auf die Kette



Korollar  

Es sei ein Körper.

Dann ist noethersch.

Beweis  

Dies ist ein Spezialfall von Fakt.