Zum Inhalt springen

Kompakte riemannsche Fläche/Geschlecht 1/Divisor Grad 4/Relation/Aufgabe/Lösung

Aus Wikiversity


  1. Für jede invertierbare Garbe von positivem Grad auf einer riemannschen Fläche vom Geschlecht ist nach Aufgabe die erste Kohomologie gleich und nach Riemann-Roch ist daher

    Wenn speziell den Grad besitzt, so ist der Raum vierdimensional.

  2. Nach Teil (1) ist der Raum achtdimensional. Die Basis von definiert mit Aufgabe Elemente in . Dies sind zehn Elemente in einem achtdimensionalen Vektorraum, also müssen sie zumindest zwei linear unabhängige lineare Relationen erfüllen.