Zum Inhalt springen

Komplexe Mannigfaltigkeiten/Holomorphe Abbildung/Tangential äquivalent/Fakt/Beweis/Aufgabe

Aus Wikiversity

Es seien und komplexe Mannigfaltigkeiten und es sei

eine holomorphe Abbildung. Es sei und und es seien

zwei holomorphe Kurven mit einem offenen Ball und . Es seien und im Punkt tangential äquivalent. Zeige, dass dann auch die Verknüpfungen und tangential äquivalent in sind.