Zum Inhalt springen

Kreis/Trigonometrische Parametrisierung/Zusammenhang in R^2/Horizontale Liftung/Aufgabe

Aus Wikiversity

Wir betrachten die trigonometrische Parametrisierung

des Einheitskreises. Es sei fixiert. Auf dem trivialen Vektorbündel

sei ein linearer Zusammenhang gegeben derart, dass der längs zurückgezogene Zusammenhang durch die Christoffelsymbole (der Index für die einzige Ableitungsrichtung wird weggelassen)

gegeben ist. Wir betrachten zu einem Punkt die Abbildung

mit

  1. Bestimme .
  2. Bestimme .
  3. Zeige, dass eine horizontale Liftung längs ist.
  4. Zeige, dass

    eine lineare Isometrie ist (der Basispunkt wird hier nicht aufgeführt).

  5. Zeige, dass

    ein Gruppenhomomorphismus ist.