Zum Inhalt springen

Kurs:Analysis (Osnabrück 2014-2016)/Teil II/Definitionsliste

Aus Wikiversity
Definition:Grenzwert einer Funktion gegen unendlich

Es sei (oder ) ein rechtsseitig (bzw. linksseitig) unbeschränktes Intervall und

eine Funktion. Dann heißt Grenzwert (oder Limes) von für (bzw. ), wenn es für jedes ein (bzw. ) gibt mit für alle (bzw. ). In diesem Fall schreibt man

(bzw. ).



Definition:Uneigentliches Integral

Es sei ein Intervall, ein (uneigentlicher) Randpunkt von und . Es sei eine stetige Funktion

gegeben. Man sagt, dass das uneigentliche Integral zu für existiert, wenn der Grenzwert

existiert. In diesem Fall schreibt man für diesen Grenzwert auch

und nennt dies das uneigentliche Integral von nach



Definition:Beidseitig uneigentliches Integral

Es sei ein Intervall mit den beiden (uneigentlichen) Randpunkten und von . Es sei eine stetige Funktion

gegeben. Man sagt, dass das (beidseitig) uneigentliche Integral

existiert, wenn für ein die beiden einseitig uneigentlichen Integrale

existieren. In diesem Fall setzt man

und nennt dies das uneigentliche Integral zu von nach .



Definition:Die Riemannsche Zetafunktion

Die Riemannsche -Funktion ist für  mit durch

definiert.



Definition:Fakultätsfunktion

Für , , heißt die Funktion

die Fakultätsfunktion.



Definition:Skalarprodukt

Es sei ein reeller Vektorraum. Ein Skalarprodukt auf ist eine Abbildung

mit folgenden Eigenschaften:

  1. Es ist

    für alle , und ebenso in der zweiten Komponente.

  2. Es ist

    für alle .

  3. Es ist für alle und genau dann, wenn ist.


Definition:Euklidischer Vektorraum

Ein reeller, endlichdimensionaler Vektorraum, der mit einem Skalarprodukt versehen ist, heißt euklidischer Vektorraum.



Definition:Skalarprodukt (komplexer Vektorraum)

Es sei ein komplexer Vektorraum. Ein Skalarprodukt auf ist eine Abbildung

mit folgenden Eigenschaften:

  1. Es ist

    für alle , und

    für alle , .

  2. Es ist

    für alle .

  3. Es ist für alle und genau dann, wenn ist.


Definition:Standardskalarprodukt (komplex)

Das auf dem durch

gegebene Skalarprodukt heißt (komplexes) Standardskalarprodukt.



Definition:Norm (zu Skalarprodukt)

Es sei ein Vektorraum über mit einem Skalarprodukt . Dann nennt man zu einem Vektor die reelle Zahl

die Norm von .



Definition:Abstand (euklidischer Vektorraum)

Es sei ein Vektorraum über mit einem Skalarprodukt . Zu Vektoren nennt man

den Abstand zwischen und .



Definition:Isometrie

Es seien und euklidische Vektorräume und sei

eine lineare Abbildung. Dann heißt eine Isometrie, wenn für alle gilt:



Definition:Metrischer Raum

Es sei eine Menge. Eine Abbildung heißt Metrik (oder Distanzfunktion), wenn für alle die folgenden Bedingungen erfüllt sind:

  1. genau dann, wenn ist (Definitheit),
  2. (Symmetrie), und
  3. (Dreiecksungleichung).

Ein metrischer Raum ist ein Paar , wobei eine Menge und eine Metrik ist.



Definition:Offene Kugel

Es sei ein metrischer Raum, und eine positive reelle Zahl. Es ist

die offene und

die abgeschlossene -Kugel um .



Definition:Offene Menge in einem metrischen Raum

Es sei ein metrischer Raum. Eine Teilmenge heißt offen (in ), wenn für jedes ein mit

existiert.



Definition:Abgeschlossene Menge in einem metrischen Raum

Es sei ein metrischer Raum. Eine Teilmenge heißt abgeschlossen, wenn das Komplement offen ist.



Definition:Beschränkte Teilmenge

Eine Teilmenge eines metrischen Raumes heißt beschränkt, wenn es eine reelle Zahl mit

gibt.



Definition:Konvergente Folge (metrischer Raum)

Es sei ein metrischer Raum und sei eine Folge in . Man sagt, dass die Folge gegen konvergiert, wenn folgende Eigenschaft erfüllt ist.

Zu jedem , , gibt es ein derart, dass für alle die Beziehung

gilt. In diesem Fall heißt der Grenzwert oder der Limes der Folge. Dafür schreibt man auch

Wenn die Folge einen Grenzwert besitzt, so sagt man auch, dass sie konvergiert (ohne Bezug auf einen Grenzwert), andernfalls, dass sie divergiert.



Definition:Häufungspunkt

Es sei ein metrischer Raum und sei eine Folge in . Ein Punkt heißt Häufungspunkt der Folge, wenn es für jedes unendlich viele Folgenglieder mit gibt.



Definition:Teilfolge

Es sei ein metrischer Raum und sei eine Folge in . Zu jeder streng wachsenden Abbildung , , heißt die Folge

eine Teilfolge der Folge.



Definition:Stetigkeit für Abbildungen zwischen metrischen Räumen

Es seien und metrische Räume,

eine Abbildung und . Die Abbildung heißt stetig in , wenn für jedes ein derart existiert, dass

gilt. Die Abbildung heißt stetig, wenn sie stetig in für jedes ist.



Definition:Homöomorphe Räume

Zwei metrische Räume und heißen homöomorph, wenn es eine bijektive stetige Abbildung

gibt, deren Umkehrabbildung ebenfalls stetig ist.



Definition:Polynomiale Funktion

Eine Funktion

die man als eine Summe der Form

mit schreiben kann, wobei nur endlich viele sind, heißt polynomiale Funktion.



Definition:Berührpunkt

Es sei ein metrischer Raum und eine Teilmenge. Ein Punkt heißt Berührpunkt von , wenn zu jedem der Durchschnitt



Definition:Abschluss (Teilmenge)

Es sei ein metrischer Raum und eine Teilmenge. Die Menge aller Berührpunkte von heißt der Abschluss von . Er wird mit bezeichnet.



Definition:Grenzwert einer Abbildung

Es sei ein metrischer Raum, sei eine Teilmenge und sei ein Berührpunkt von . Es sei

eine Abbildung in einen weiteren metrischen Raum . Dann heißt der Grenzwert (oder Limes) von in , wenn es für jedes ein gibt mit der folgenden Eigenschaft: Für jedes ist . In diesem Fall schreibt man



Definition:Zusammenhängend

Ein metrischer Raum heißt zusammenhängend, wenn es genau zwei Teilmengen von gibt (nämlich und selbst), die sowohl offen als auch abgeschlossen sind.



Definition:Wegzusammenhängend

Ein nichtleerer metrischer Raum heißt wegzusammenhängend, wenn es zu je zwei Punkten eine stetige Abbildung

mit und gibt.



Definition:Gleichmäßig stetig

Es sei

eine Abbildung zwischen den metrischen Räumen und . Dann heißt gleichmäßig stetig, wenn es zu jedem ein mit folgender Eigenschaft gibt: Für alle mit ist .



Definition:Lipschitz-stetig

Es sei

eine Abbildung zwischen den metrischen Räumen und . Die Abbildung heißt Lipschitz-stetig, wenn es eine reelle Zahl mit

für alle gibt.



Definition:Stark kontrahierend

Es sei

eine Abbildung zwischen den metrischen Räumen und . Dann heißt stark kontrahierend, wenn es eine nichtnegative reelle Zahl gibt mit

für alle .



Definition:Fixpunkt

Es sei eine Menge und

eine Abbildung. Ein Element mit heißt Fixpunkt der Abbildung.



Definition:Cauchy-Folge (metrischer Raum)

Eine Folge in einem metrischen Raum heißt Cauchy-Folge, wenn folgende Bedingung erfüllt ist.

Zu jedem , , gibt es ein derart, dass für alle die Beziehung

gilt.



Definition:Vollständiger metrischer Raum

Ein metrischer Raum heißt vollständig, wenn jede Cauchy-Folge in konvergiert.



Definition:Kompakt

Eine Teilmenge heißt kompakt, wenn sie abgeschlossen und beschränkt ist.



Definition:Differenzierbare Kurve in einem Punkt

Es sei ein reelles Intervall, ein euklidischer Vektorraum und

eine Abbildung. Dann heißt in differenzierbar, wenn der Limes

existiert. Dieser Limes heißt dann die Ableitung von in und wird mit

bezeichnet.



Definition:Differenzierbare Kurve

Es sei ein reelles Intervall, ein euklidischer Vektorraum und

eine Abbildung. Dann heißt differenzierbar, wenn in jedem Punkt differenzierbar ist. Die Abbildung

heißt dann die Ableitung von .



Definition:Streckenzug zu einer Unterteilung

Es sei ein kompaktes Intervall und

eine Abbildung. Zu einer Unterteilung

nennt man

den zugehörigen Streckenzug.



Definition:Länge eines Streckenzugs

Zu einer Punktfolge

nennt man

die Gesamtlänge des Streckenzugs .



Definition:Rektifizierbare Kurve

Es sei ein kompaktes Intervall und

eine Abbildung. Dann nennt man

die Kurvenlänge von . Wenn endlich ist, so heißt die Kurve rektifizierbar.



Definition:Vektorfeld

Es sei ein endlichdimensionaler reeller Vektorraum, ein reelles Intervall und eine offene Menge. Dann nennt man eine Abbildung

ein Vektorfeld (auf ).



Definition:Wegintegral (Vektorfeld)

Es sei eine offene Teilmenge in einem euklidischen Vektorraum,

ein stetiges Vektorfeld und

eine stetig differenzierbare Kurve. Dann heißt

das Wegintegral zum Vektorfeld längs des Weges .



Definition:Gewöhnliche Differentialgleichung

Es sei ein endlichdimensionaler reeller Vektorraum, ein reelles Intervall, eine offene Menge und

ein Vektorfeld auf . Dann nennt man

die gewöhnliche Differentialgleichung (oder gewöhnliches Differentialgleichungssystem) zum Vektorfeld .



Definition:Lösung der gewöhnlichen Differentialgleichung

Es sei ein endlichdimensionaler reeller Vektorraum, ein reelles Intervall, eine offene Menge und

ein Vektorfeld auf . Zur gewöhnlichen Differentialgleichung

heißt eine Abbildung

auf einem offenen (Teil)Intervall eine Lösung der Differentialgleichung, wenn folgende Eigenschaften erfüllt sind.

  1. Es ist für alle .
  2. Die Abbildung ist differenzierbar.
  3. Es ist für alle .


Definition:Anfangswertproblem (Differentialgleichungssystem)

Es sei ein endlichdimensionaler reeller Vektorraum, ein reelles Intervall, eine offene Menge und

ein Vektorfeld auf . Es sei gegeben. Dann nennt man

das Anfangswertproblem zur gewöhnlichen Differentialgleichung mit der Anfangsbedingung .



Definition:Lösung des Anfangswertproblems (Differentialgleichungssystems)

Es sei ein endlichdimensionaler reeller Vektorraum, ein reelles Intervall, eine offene Menge und

ein Vektorfeld auf . Es sei vorgegeben. Dann nennt man eine Abbildung

auf einem Intervall mit eine Lösung des Anfangswertproblems

wenn eine Lösung der Differentialgleichung ist und wenn zusätzlich

gilt.



Definition:Zentralfeld

Es sei eine offene Teilmenge in einem endlichdimensionalen reellen Vektorraum , ein Intervall und es sei

eine Funktion. Dann heißt das Vektorfeld

ein Zentralfeld.



Definition:Differentialgleichung der Ordnung n

Es sei ein offenes Intervall, offen und

eine Funktion. Dann nennt man den Ausdruck

eine Differentialgleichung der Ordnung .



Definition:Homogenes lineares gewöhnliches Differentialgleichungssystem

Es sei ein offenes reelles Intervall. Eine Differentialgleichung der Form

wobei

eine Matrix ist, deren Einträge allesamt Funktionen

sind, heißt homogene lineare gewöhnliche Differentialgleichung oder homogenes lineares gewöhnliches Differentialgleichungssystem.



Definition:Inhomogenes lineares gewöhnliches Differentialgleichungssystem

Es sei ein offenes reelles Intervall. Eine Differentialgleichung der Form

wobei

eine Matrix ist, deren Einträge allesamt Funktionen

sind und wobei

eine Abbildung ist, heißt inhomogene lineare gewöhnliche Differentialgleichung oder inhomogenes lineares gewöhnliches Differentialgleichungssystem. Die Abbildung heißt dabei Störabbildung.



Definition:Homogenes lineares gewöhnliches Differentialgleichungssystem mit konstanten Koeffizienten

Eine Differentialgleichung der Form

wobei

eine Matrix mit Einträgen ist, heißt homogene lineare gewöhnliche Differentialgleichung mit konstanten Koeffizienten oder homogenes lineares gewöhnliches Differentialgleichungssystem mit konstanten Koeffizienten.



Definition:Inhomogenes lineares gewöhnliches Differentialgleichungssystem mit konstanten Koeffizienten

Es sei ein offenes Intervall. Eine Differentialgleichung der Form

wobei eine Matrix mit Einträgen ist und

eine Abbildung, heißt inhomogene lineare gewöhnliche Differentialgleichung mit konstanten Koeffizienten oder inhomogenes lineares gewöhnliches Differentialgleichungssystem mit konstanten Koeffizienten.



Definition:Charakteristisches Polynom (Differentialgleichung)

Es sei

mit eine lineare gewöhnliche Differentialgleichung mit konstanten Koeffizienten. Dann nennt man das charakteristische Polynom

auch das charakteristische Polynom der Differentialgleichung.



Definition:Fundamentalsystem

Es sei

mit ein homogenes lineares gewöhnliches Differentialgleichungssystem mit konstanten Koeffizienten. Dann heißt eine Basis des Lösungsraumes ein Fundamentalsystem von Lösungen dieses Systems.



Definition:Richtungsableitung in einem Punkt

Es seien und endlichdimensionale normierte Vektorräume, eine offene Teilmenge, und eine Abbildung. Weiter sei ein Punkt und ein fixierter Vektor. Dann heißt differenzierbar in in Richtung , falls der Grenzwert

existiert. In diesem Fall heißt dieser Grenzwert die Ableitung von in in Richtung . Er wird mit

bezeichnet.



Definition:Richtungsableitung

Seien und endlichdimensionale - Vektorräume sei eine offene Teilmenge, sei eine Abbildung und ein fixierter Vektor. Dann heißt differenzierbar in Richtung , falls in jedem Punkt in Richtung differenzierbar ist. In diesem Fall heißt die Abbildung

die Richtungsableitung von in Richtung .



Definition:Partiell differenzierbar in einem Punkt

Es sei offen und sei eine Abbildung durch

gegeben. Es sei ein Punkt. Für fixierte Indizes und betrachten wir die Abbildung

(wobei ein reelles Intervall (bzw. eine offene Kreisscheibe) mit

derart sei, dass gilt) als Funktion in einer Variablen, wobei die übrigen Variablen , , fixiert seien. Ist diese Funktion in differenzierbar, so heißt partiell differenzierbar in bezüglich der Koordinate . Man bezeichnet diese Ableitung (welche ein Element in ist) mit

und nennt sie die -te partielle Ableitung von in .

Die Abbildung heißt partiell differenzierbar im Punkt , falls für alle und die partiellen Ableitungen in existieren. Die -te partielle Ableitung von in wird mit

bezeichnet.



Definition:Partiell differenzierbar

Es sei offen und sei eine Abbildung

gegeben. Dann heißt partiell differenzierbar, wenn in jedem Punkt partiell differenzierbar ist. In diesem Fall heißt die Abbildung

die -te partielle Ableitung von .



Definition:Jacobi-Matrix

Es sei offen und sei eine Abbildung

gegeben, die in partiell differenzierbar sei. Dann heißt die Matrix

die Jacobi-Matrix zu im Punkt .



Definition:Höhere Richtungsableitung

Es seien und endlichdimensionale - Vektorräume,

eine Abbildung auf einer offenen Menge und Vektoren in . Man sagt, dass die höhere Richtungsableitung von in Richtung existiert, wenn die höhere Richtungsableitung in Richtung existiert und davon die Richtungsableitung in Richtung existiert. Sie wird mit

bezeichnet.



Definition:n-mal stetig differenzierbar

Es seien und endlichdimensionale - Vektorräume und

eine Abbildung auf einer offenen Menge . Man sagt, dass -mal stetig differenzierbar ist, wenn für jede Auswahl von Vektoren aus die höhere Richtungsableitung

in Richtung existiert und stetig ist.



Definition:Totale Differenzierbarkeit

Es seien und endlichdimensionale - Vektorräume, eine offene Menge und eine Abbildung. Dann heißt differenzierbar (oder total differenzierbar) im Punkt , wenn es eine - lineare Abbildung mit der Eigenschaft

gibt, wobei eine in stetige Abbildung mit ist und die Gleichung für alle mit gilt.

Diese lineare Abbildung heißt, falls sie existiert, das (totale) Differential von an der Stelle und wird mit

bezeichnet.



Definition:Lokales Maximum und Minimum

Es sei ein metrischer Raum und

eine Funktion. Man sagt, dass in einem Punkt ein lokales Maximum besitzt, wenn es ein derart gibt, dass für alle  mit die Abschätzung

gilt. Man sagt, dass in ein lokales Minimum besitzt, wenn es ein derart gibt, dass für alle  mit die Abschätzung

gilt.



Definition:Isolierte lokale Extrema

Es sei ein metrischer Raum und

eine Funktion. Man sagt, dass in einem Punkt ein isoliertes lokales Maximum besitzt, wenn es ein derart gibt, dass für alle  mit  und die Abschätzung

gilt. Man sagt, dass in ein isoliertes lokales Minimum besitzt, wenn es ein derart gibt, dass für alle  mit  und die Abschätzung

gilt.



Definition:Linearform

Es sei ein Körper und sei ein - Vektorraum. Eine lineare Abbildung

heißt eine Linearform auf .



Definition:Dualraum

Es sei ein Körper und ein - Vektorraum. Dann heißt der Homomorphismenraum

der Dualraum zu .



Definition:Bilinearform

Es sei ein Körper und ein - Vektorraum. Eine Abbildung

heißt Bilinearform, wenn für alle die induzierten Abbildungen

und für alle die induzierten Abbildungen

- linear sind.



Definition:Nicht ausgeartete Bilinearform

Es sei ein Körper und ein - Vektorraum. Eine Bilinearform

heißt nicht ausgeartet, wenn für alle , die induzierten Abbildungen

und für alle , die induzierten Abbildungen

nicht die Nullabbildung sind.



Definition:Gradient

Es sei ein euklidischer Vektorraum, offen und

eine in differenzierbare Funktion. Dann nennt man den eindeutig bestimmten Vektor mit

für alle den Gradienten von in . Er wird mit

bezeichnet.



Definition:Niveaumenge

Zu einer Funktion

wobei ein metrischer Raum sei, nennt man zu die Menge

die Niveaumenge zu zum Wert .



Definition:Kritischer Punkt

Es sei ein endlichdimensionaler reeller Vektorraum, offen und

eine differenzierbare Funktion. Dann heißt ein kritischer Punkt von (oder ein stationärer Punkt), wenn

ist. Andernfalls spricht man von einem regulären Punkt.



Definition:Hesse-Form

Es sei ein endlichdimensionaler reeller Vektorraum, eine offene Menge und

eine zweimal stetig differenzierbare Funktion. Zu heißt die Abbildung

die Hesse-Form im Punkt .



Definition:Hesse-Matrix

Es sei ein endlichdimensionaler reeller Vektorraum, eine offene Menge und

eine zweimal stetig differenzierbare Funktion. Es sei eine Basis , , von gegeben mit den zugehörigen Richtungsableitungen , . Zu heißt dann die Matrix

die Hesse-Matrix zu im Punkt bezüglich der gegebenen Basis.



Definition:Gramsche Matrix (Bilinearform)

Es sei ein Körper, ein endlichdimensionaler - Vektorraum und eine Bilinearform auf . Es sei eine Basis von . Dann heißt die - Matrix

die Gramsche Matrix von bezüglich dieser Basis.



Definition:Symmetrische Bilinearform

Es sei ein Körper, ein - Vektorraum und eine Bilinearform auf . Die Bilinearform heißt symmetrisch, wenn

für alle gilt.



Definition:Definitheit einer symmetrischen Bilinearform

Es sei ein reeller Vektorraum mit einer symmetrischen Bilinearform . Diese Bilinearform heißt

  1. positiv definit, wenn für alle , ist.
  2. negativ definit, wenn für alle , ist.
  3. positiv semidefinit, wenn für alle ist.
  4. negativ semidefinit, wenn für alle ist.
  5. indefinit, wenn weder positiv semidefinit noch negativ semidefinit ist.


Definition:Typ einer symmetrischen Bilinearform

Es sei ein endlichdimensionaler reeller Vektorraum mit einer symmetrischen Bilinearform . Man sagt, dass eine solche Bilinearform den Typ

besitzt, wobei

und

ist.



Definition:Taylor-Polynom

Es sei eine offene Teilmenge,

eine -mal stetig-differenzierbare Funktion und . Dann heißt

das Taylor-Polynom vom Grad zu in .



Definition:Diffeomorphismus

Es seien und endlichdimensionale reelle Vektorräume und und offene Teilmengen. Eine Abbildung

heißt -Diffeomorphismus, wenn bijektiv und -mal stetig differenzierbar ist, und wenn die Umkehrabbildung

ebenfalls -mal stetig differenzierbar ist.



Definition:Regulärer Punkt

Es seien und endlichdimensionale reelle Vektorräume, sei offen, sei und sei

eine in differenzierbare Abbildung. Dann heißt ein regulärer Punkt von , wenn

ist. Andernfalls heißt ein kritischer Punkt oder ein singulärer Punkt.



Definition:Faser

Zu einer Abbildung

zwischen zwei Mengen und heißt zu die Menge

die Faser von über .



Definition:Tangentialraum an Faser

Es seien und endlichdimensionale reelle Vektorräume, es sei offen und sei

eine stetig differenzierbare Abbildung. Es sei ein Punkt, in dem das totale Differential surjektiv sei, und sei die Faser von durch . Dann nennt man

den Tangentialraum an die Faser in .



Definition:Lipschitz-Bedingung für Vektorfelder

Es sei ein endlichdimensionaler reeller Vektorraum, ein reelles Intervall, eine offene Menge und

ein Vektorfeld auf . Man sagt, dass das Vektorfeld einer Lipschitz-Bedingung genügt, wenn es eine reelle Zahl mit

für alle und gibt.



Definition:Lokale Lipschitz-Bedingung für Vektorfelder

Es sei ein endlichdimensionaler reeller Vektorraum, ein reelles Intervall, eine offene Menge und

ein Vektorfeld auf . Man sagt, dass das Vektorfeld lokal einer Lipschitz-Bedingung genügt, wenn es zu jedem Punkt eine offene Umgebung

derart gibt, dass das auf eingeschränkte Vektorfeld einer Lipschitz-Bedingung genügt.



Definition:Punktweise konvergente Abbildungsfolge

Es sei eine Menge, ein metrischer Raum und

() eine Folge von Abbildungen. Man sagt, dass die Abbildungsfolge punktweise konvergiert, wenn für jedes die Folge

konvergiert.



Definition:Grenzabbildung

Es sei eine Menge, ein metrischer Raum und

() eine Folge von Abbildungen, die punktweise konvergiert. Dann nennt man die Abbildung

die Grenzabbildung der Abbildungsfolge.



Definition:Gleichmäßig konvergente Abbildungsfolge

Es sei eine Menge, ein metrischer Raum und

() eine Folge von Abbildungen. Man sagt, dass die Abbildungsfolge gleichmäßig konvergiert, wenn es eine Abbildung

derart gibt, dass es zu jedem ein gibt mit



Definition:Gradientenfeld

Es sei ein euklidischer Vektorraum, offen und

eine differenzierbare Funktion. Dann nennt man die Abbildung

das zugehörige Gradientenfeld.