Kurs:Elemente der Algebra (Osnabrück 2024-2025)/Arbeitsblatt 10/latex
\setcounter{section}{10}
\zwischenueberschrift{Übungsaufgaben}
\inputaufgabegibtloesung
{}
{
In den Klassenarbeiten der Klasse $7x$ können die üblichen Noten mit den Zehntelangaben
\mathl{0,3}{} oder $7$ erzielt werden
\zusatzklammer {also beispielsweise
\mavergleichskettek
{\vergleichskettek
{ 2+
}
{ = }{ 1,7
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{,}
\mavergleichskettek
{\vergleichskettek
{ 2
}
{ = }{ 2,0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskettek
{\vergleichskettek
{ 2-
}
{ = }{ 2,3
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}} {} {.}
Es werden im Halbjahr zwei Klassenarbeiten geschrieben, ihr Durchschnitt
\zusatzklammer {das
\definitionsverweis {arithmetische Mittel}{}{}} {} {}
bestimmt über die Endnote, die ganzzahlig ist. Kann es einen Unterschied machen, ob man zuerst die einzelnen Klassenarbeiten rundet und dann den Durchschnitt rundet, oder ob man den Durchschnitt nimmt und dann rundet
\zusatzklammer {$,5$ soll auf die größere ganze Note gerundet werden} {} {?}
}
{} {}
\inputaufgabe
{}
{
Beweise Lemma 10.6.
}
{} {}
\inputaufgabe
{}
{
Es sei $G$ eine
\zusatzklammer {multiplikativ geschriebene} {} {}
\definitionsverweis {kommutative Gruppe}{}{}
und sei
\mavergleichskette
{\vergleichskette
{ n
}
{ \in }{ \N
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Zeige, dass das Potenzieren
\maabbeledisp {} {G} {G
} {x} {x^n
} {,}
ein
\definitionsverweis {Gruppenhomomorphismus}{}{}
ist.
}
{} {}
\inputaufgabe
{}
{
Es sei $G$ eine additiv geschriebene \definitionsverweis {kommutative Gruppe}{}{.} Zeige, dass die Negation, also die Abbildung \maabbeledisp {} {G} {G } {x} {-x } {,} ein \definitionsverweis {Gruppenisomorphismus}{}{} ist.
}
{} {}
\inputaufgabegibtloesung
{}
{
Es sei $G$ eine \definitionsverweis {kommutative Gruppe}{}{} und \maabbdisp {\varphi} {G} {H } {} ein \definitionsverweis {surjektiver}{}{} \definitionsverweis {Gruppenhomomorphismus}{}{.} Zeige, dass $H$ ebenfalls kommutativ ist.
}
{} {}
\inputaufgabegibtloesung
{}
{
Bestimme, ob die durch die \definitionsverweis {Gaußklammer}{}{} gegebene Abbildung \maabbeledisp {} {\Q} {\Z } {q} { \lfloor q \rfloor } {,} ein \definitionsverweis {Gruppenhomomorphismus}{}{} ist oder nicht.
}
{} {}
\inputaufgabegibtloesung
{}
{
Es sei $R$ ein
\definitionsverweis {kommutativer Ring}{}{}
und
\mavergleichskette
{\vergleichskette
{ h
}
{ \in }{ R
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Zeige, dass die Abbildung
\maabbeledisp {} {R} {R
} {f} {hf
} {,}
ein
\definitionsverweis {Gruppenhomomorphismus}{}{}
ist. Beschreibe das
\definitionsverweis {Bild}{}{}
und den
\definitionsverweis {Kern}{}{}
dieser Abbildung.
}
{} {}
\inputaufgabe
{}
{
a) Für welche reellen Polynome
\mavergleichskette
{\vergleichskette
{ P
}
{ \in }{ \R[X]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist die zugehörige polynomiale Abbildung
\maabbeledisp {} {(\R,0,+)} {(\R,0,+)
} {x} { P(x)
} {,}
ein
\definitionsverweis {Gruppenhomomorphismus}{}{?}
b) Für welche reellen Polynome
\mavergleichskette
{\vergleichskette
{ Q
}
{ \in }{ \R[X]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist allenfalls $0$ eine Nullstelle und die zugehörige polynomiale Abbildung
\maabbeledisp {} { (\R^{\times}, 1, \cdot) } {(\R^{\times}, 1, \cdot)
} {x} {Q(x)
} {,}
ein
\definitionsverweis {Gruppenhomomorphismus}{}{?}
}
{} {}
\inputaufgabe
{}
{
Es sei
\mavergleichskette
{\vergleichskette
{ d
}
{ \in }{ \N_{\geq 2}
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Wir betrachten
\mavergleichskettedisp
{\vergleichskette
{ \Z/(d)
}
{ =} { \{0,1 , \ldots , d-1\}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit der in
Aufgabe 1.20
beschriebenen Addition. Zeige, dass die Abbildung
\maabbeledisp {\psi} { \Z/(d)} { \Z
} {r} { r
} {,}
\betonung{kein}{}
\definitionsverweis {Gruppenhomomorphismus}{}{}
ist.
}
{} {}
Wir erinnern an den Begriff einer Matrix.
Es sei $R$ ein
\definitionsverweis {kommutativer Ring}{}{.}
Unter einer
\definitionswortpraemath {m \times n}{ Matrix }{}
\zusatzklammer {über $R$} {} {}
versteht man einen Ausdruck der Form
\mathdisp {\begin{pmatrix} a_{11 } & a_{1 2} & \ldots & a_{1 n } \\
a_{21 } & a_{2 2} & \ldots & a_{2 n } \\
\vdots & \vdots & \ddots & \vdots \\ a_{ m 1 } & a_{ m 2 } & \ldots & a_{ m n } \end{pmatrix}} { , }
wobei die Einträge
\mathl{a_{ij}}{} aus $R$ sind.
\inputaufgabe
{}
{
Es sei $R$ ein kommutativer Ring und
\mathdisp {\begin{pmatrix} a_{11 } & a_{1 2} & \ldots & a_{1 n } \\
a_{21 } & a_{2 2} & \ldots & a_{2 n } \\
\vdots & \vdots & \ddots & \vdots \\ a_{ m 1 } & a_{ m 2 } & \ldots & a_{ m n } \end{pmatrix}} { }
eine
\definitionsverweis {Matrix}{}{}
über $R$. Zeige, dass die Matrix einen
\definitionsverweis {Gruppenhomomorphismus}{}{}
\maabbdisp {} {R^n} {R^m
} {}
definiert, indem man
\mathdisp {\begin{pmatrix} x_1 \\x_2\\ \vdots\\x_n \end{pmatrix} \longmapsto \begin{pmatrix} a_{11 } & a_{1 2} & \ldots & a_{1 n } \\
a_{21 } & a_{2 2} & \ldots & a_{2 n } \\
\vdots & \vdots & \ddots & \vdots \\ a_{ m 1 } & a_{ m 2 } & \ldots & a_{ m n } \end{pmatrix} \begin{pmatrix} x_1 \\x_2\\ \vdots\\x_n \end{pmatrix}} { }
anwendet, wobei
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} a_{11 } & a_{1 2} & \ldots & a_{1 n } \\
a_{21 } & a_{2 2} & \ldots & a_{2 n } \\
\vdots & \vdots & \ddots & \vdots \\ a_{ m 1 } & a_{ m 2 } & \ldots & a_{ m n } \end{pmatrix} \begin{pmatrix} x_1 \\x_2\\ \vdots\\x_n \end{pmatrix}
}
{ =} { \begin{pmatrix} \sum_{i = 1}^n a_{1 i} x_i \\ \sum_{i = 1}^n a_{2 i} x_i \\ \vdots\\ \sum_{i = 1}^n a_{m i} x_i \end{pmatrix}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
ist.
}
{} {}
\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Chocolates.jpg} }
\end{center}
\bildtext {} }
\bildlizenz { Chocolates.jpg } {} {Sujit kumar} {Commons} {CC-by-sa 4.0} {}
\inputaufgabe
{}
{
In einer Kekspackung befinden sich Schokokekse, Waffelröllchen, Mandelsterne und Nougatringe. Die Kalorien, der Vitamin C-Gehalt und der Anteil an linksdrehenden Fettsäuren werden durch folgende Tabelle
\zusatzklammer {in geeigneten Maßeinheiten} {} {}
wiedergegeben:
\tabellefuenfvier {\zeileundvier {Sorte} {Kalorien} {Vitamin C} {Fett} }
{\zeileundvier {Schokokeks} {10} {5} {3} }
{\zeileundvier {Waffelröllchen} {8} {7} {6} }
{\zeileundvier {Mandelstern} {7} {3} {1} }
{\zeileundvier {Nougatring} {12} {0} {5} }
a) Beschreibe mit einer Matrix die Abbildung, die zu einem Verzehrtupel
\mathl{(x,y,z,w)}{} das Aufnahmetupel
\mathl{(K,V,F)}{} berechnet.
b) Heinz isst $100$ Schokokekse. Berechne seine Vitaminaufnahme.
c) Ludmilla isst $10$ Nougatringe und $11$ Waffelröllchen. Berechne ihre Gesamtaufnahme an Nährstoffen.
d) Peter isst $5$ Mandelsterne mehr und $7$ Schokokekse weniger als Fritz. Bestimme die Differenz ihrer Kalorienaufnahme.
}
{} {}
Matrizen werden miteinander multipliziert, indem jede Zeile der linken Matrix mit jeder Spalte der rechten Matrix gemäß der Merkregel
\mavergleichskettedisp
{\vergleichskette
{ (Z E I L E) \begin{pmatrix} S \\P\\ A\\L\\ T \end{pmatrix}
}
{ =} { ZS+EP+IA+LL+ET
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
multipliziert wird
\zusatzklammer {insbesondere muss die Spaltenanzahl der linken Matrix mit der Zeilenanzahl der rechten Matrix übereinstimmen} {} {}
und das Ergebnis an die entsprechende Stelle gesetzt wird.
\inputaufgabe
{}
{
Berechne das
\definitionsverweis {Matrizenprodukt}{}{}
\mathdisp {\begin{pmatrix} Z & E & I & L & E \\ R & E & I & H & E \\ H & O & R & I & Z \\ O & N & T & A & L \end{pmatrix} \cdot \begin{pmatrix} S & E & I \\ P & V & K \\ A & E & A \\ L & R & A \\ T & T & L \end{pmatrix}} { . }
}
{} {}
\inputaufgabe
{}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{}
und sei
\mavergleichskettedisp
{\vergleichskette
{ M
}
{ =} { { \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a,b,c,d \in K , \, ad -bc \neq 0 \right\} }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
die Menge aller invertierbaren
$2 \times 2$-\definitionsverweis {Matrizen}{}{.}
a) Zeige \zusatzklammer {ohne Bezug zur Determinante} {} {,} dass $M$ mit der \definitionsverweis {Matrizenmultiplikation}{}{} eine \definitionsverweis {Gruppe}{}{} bildet.
b) Zeige
\zusatzklammer {ohne Bezug zur Determinante} {} {,}
dass die Abbildung
\maabbeledisp {} { M } { K^{\times}
} { \begin{pmatrix} a & b \\ c & d \end{pmatrix} } { ad-bc
} {,}
ein
\definitionsverweis {Gruppenhomomorphismus}{}{}
ist.
}
{} {}
\inputaufgabe
{}
{
Es sei $M$ eine
\definitionsverweis {endliche Menge}{}{}
und
\mavergleichskette
{\vergleichskette
{ T
}
{ \subseteq }{ M
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
eine Teilmenge, und es seien
\mathkor {} {\operatorname{Perm} \,( T)} {und} {\operatorname{Perm} \,( M)} {}
die zugehörigen
\definitionsverweis {Permutationsgruppen}{}{ (also die Menge aller bijektiven Abbildungen auf $M$, siehe
Aufgabe 1.5.)}
Zeige, dass durch
\maabbeledisp {\Psi} { \operatorname{Perm} \,( T) } { \operatorname{Perm} \,( M)
} {\varphi} { \tilde{\varphi }
} {,}
mit
\mavergleichskettedisp
{\vergleichskette
{\tilde{\varphi} (x)
}
{ =} { \begin{cases} \varphi(x),\, \text{falls } x \in T, \\ x \text{ sonst}, \end{cases}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
ein
\definitionsverweis {injektiver}{}{}
\definitionsverweis {Gruppenhomomorphismus}{}{}
gegeben ist.
}
{} {}
\inputaufgabe
{}
{
Es sei $G$ eine
\definitionsverweis {Gruppe}{}{}
und
\mavergleichskette
{\vergleichskette
{ h
}
{ \in }{ G
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Zeige, dass die Abbildung
\maabbeledisp {} {G} {G
} {g} {hgh^{-1}
} {,}
eine
\definitionsverweis {Gruppenautomorphismus}{}{}
ist.
}
{} {}
Die Automorphismen der vorstehenden Aufgabe nennt man auch \stichwort {innere Automorphismen} {.}
\inputaufgabe
{}
{
Es sei $G$ eine
\definitionsverweis {Gruppe}{}{}
und sei
\mavergleichskette
{\vergleichskette
{ g
}
{ \in }{ G
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ein Element und sei
\maabbeledisp {\varphi} { G } { G
} { h } { hg
} {,}
die Multiplikation mit $g$. Zeige, dass $\varphi$ bijektiv ist, und dass $\varphi$ genau dann ein
\definitionsverweis {Gruppenhomomorphismus}{}{}
ist, wenn
\mavergleichskette
{\vergleichskette
{ g
}
{ = }{ e_G
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist.
}
{} {}
\zwischenueberschrift{Aufgaben zum Abgeben}
\inputaufgabe
{3 (1+2)}
{
Es seien $G_1 , \ldots , G_n$
\definitionsverweis {Gruppen}{}{.}
a) Definiere eine Gruppenstruktur auf dem
\definitionsverweis {Produkt}{}{}
\mathdisp {G_1 \times \cdots \times G_n} { . }
b) Es sei $H$ eine weitere Gruppe. Zeige, dass eine Abbildung
\maabbeledisp {\varphi} {H} {G_1 \times \cdots \times G_n
} {x} { \varphi(x)= (\varphi_1(x) , \ldots , \varphi_n(x))
} {,}
genau dann ein
\definitionsverweis {Gruppenhomomorphismus}{}{}
ist, wenn alle Komponenten $\varphi_i$ Gruppenhomomorphismen sind.
}
{} {}
\inputaufgabe
{4}
{
Bestimme die \definitionsverweis {Gruppenhomomorphismen}{}{} von \mathkor {} {(\Q,+,0)} {nach} {(\Z,+,0)} {.}
}
{} {}
Die folgende Aufgabe knüpft an
Aufgabe 1.21
an. Zu einer reellen Zahl $x$ bezeichnet
\mathl{\lfloor x \rfloor}{} die größte ganze Zahl, die kleiner oder gleich $x$ ist.
\inputaufgabe
{3}
{
Wir betrachten
\mavergleichskettedisp
{\vergleichskette
{M
}
{ =} { { \left\{ q \in \Q \mid 0 \leq q < 1 \right\} }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit der in
Aufgabe 1.17
definierten Verknüpfung, die nach
Aufgabe 1.21
eine
\definitionsverweis {Gruppe}{}{}
ist. Zeige, dass die Abbildung
\maabbeledisp {} {\Q} {M
} {q} { q - \lfloor q \rfloor
} {,}
ein
\definitionsverweis {Gruppenhomomorphismus}{}{}
ist.
}
{} {}
\inputaufgabe
{2}
{
Bestimme für jedes
\mavergleichskette
{\vergleichskette
{ n
}
{ \in }{ \N
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
den
\definitionsverweis {Kern}{}{}
des Potenzierens
\maabbeledisp {} {\R^\times} { \R^\times
} { z } { z^n
} {.}
}
{} {}
\inputaufgabe
{1}
{
Zeige, dass es keinen
\definitionsverweis {Gruppenhomomorphismus}{}{}
\maabbdisp {\varphi} {(\R,0,+)} {G
} {}
in eine Gruppe $G$ mit der Eigenschaft gibt, dass
\mavergleichskette
{\vergleichskette
{ r
}
{ \in }{ \R
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
genau dann
\definitionsverweis {irrational}{}{}
ist, wenn
\mavergleichskette
{\vergleichskette
{ \varphi(r)
}
{ = }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist.
}
{} {}