Kurs:Elemente der Algebra (Osnabrück 2024-2025)/Arbeitsblatt 10/latex
\setcounter{section}{10}
\zwischenueberschrift{Übungsaufgaben}
\inputaufgabe
{}
{
Beweise Lemma 10.6.
}
{} {}
\inputaufgabe
{}
{
Es sei $G$ eine
\zusatzklammer {multiplikativ geschriebene} {} {}
\definitionsverweis {kommutative Gruppe}{}{}
und sei
\mathl{n \in \N}{.} Zeige, dass das Potenzieren
\maabbeledisp {} {G} {G
} {x} {x^n
} {,}
ein
\definitionsverweis {Gruppenhomomorphismus}{}{}
ist.
}
{} {}
\inputaufgabe
{}
{
Es sei $G$ eine additiv geschriebene \definitionsverweis {kommutative Gruppe}{}{.} Zeige, dass die Negation, also die Abbildung \maabbeledisp {} {G} {G } {x} {-x } {,} ein \definitionsverweis {Gruppenisomorphismus}{}{} ist.
}
{} {}
\inputaufgabegibtloesung
{}
{
Es sei $G$ eine \definitionsverweis {kommutative Gruppe}{}{} und \maabbdisp {\varphi} {G} {H } {} ein \definitionsverweis {surjektiver}{}{} \definitionsverweis {Gruppenhomomorphismus}{}{.} Zeige, dass $H$ ebenfalls kommutativ ist.
}
{} {}
\inputaufgabegibtloesung
{}
{
Bestimme, ob die durch die \definitionsverweis {Gaußklammer}{}{} gegebene Abbildung \maabbeledisp {} {\Q} {\Z } {q} { \lfloor q \rfloor } {,} ein \definitionsverweis {Gruppenhomomorphismus}{}{} ist oder nicht.
}
{} {}
\inputaufgabegibtloesung
{}
{
Es sei $R$ ein
\definitionsverweis {kommutativer Ring}{}{}
und
\mathl{h \in R}{.} Zeige, dass die Abbildung
\maabbeledisp {} {R} {R
} {f} {hf
} {,}
ein
\definitionsverweis {Gruppenhomomorphismus}{}{}
ist. Beschreibe das
\definitionsverweis {Bild}{}{}
und den
\definitionsverweis {Kern}{}{}
dieser Abbildung.
}
{} {}
\inputaufgabe
{}
{
a) Für welche reellen Polynome
\mathl{P \in \R[X]}{} ist die zugehörige polynomiale Abbildung
\maabbeledisp {} {(\R,0,+)} {(\R,0,+)
} {x} { P(x)
} {,}
ein
\definitionsverweis {Gruppenhomomorphismus}{}{?}
b) Für welche reellen Polynome
\mathl{Q\in \R[X]}{} ist allenfalls $0$ eine Nullstelle und die zugehörige polynomiale Abbildung
\maabbeledisp {} { (\R^{\times}, 1, \cdot) } {(\R^{\times}, 1, \cdot)
} {x} {Q(x)
} {,}
ein
\definitionsverweis {Gruppenhomomorphismus}{}{?}
}
{} {}
\inputaufgabe
{}
{
Es sei
\mathl{d \in \N_{\geq 2}}{.} Wir betrachten
\mavergleichskettedisp
{\vergleichskette
{ \Z/(d)
}
{ =} { \{0,1 , \ldots , d-1\}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit der in
Aufgabe 1.19
beschriebenen Addition. Zeige, dass die Abbildung
\maabbeledisp {\psi} { \Z/(d)} { \Z
} {r} { r
} {,}
\betonung{kein}{}
\definitionsverweis {Gruppenhomomorphismus}{}{}
ist.
}
{} {}
Wir erinnern an den Begriff einer Matrix.
Es sei $R$ ein
\definitionsverweis {kommutativer Ring}{}{.}
Unter einer
\definitionswortpraemath {m \times n}{ Matrix }{}
\zusatzklammer {über $R$} {} {}
versteht man einen Ausdruck der Form
\mathdisp {\begin{pmatrix} a_{11 } & a_{1 2} & \ldots & a_{1 n } \\
a_{21 } & a_{2 2} & \ldots & a_{2 n } \\
\vdots & \vdots & \ddots & \vdots \\ a_{ m 1 } & a_{ m 2 } & \ldots & a_{ m n } \end{pmatrix}} { , }
wobei die Einträge
\mathl{a_{ij}}{} aus $R$ sind.
\inputaufgabe
{}
{
Es sei $R$ ein kommutativer Ring und
\mathdisp {\begin{pmatrix} a_{11 } & a_{1 2} & \ldots & a_{1 n } \\
a_{21 } & a_{2 2} & \ldots & a_{2 n } \\
\vdots & \vdots & \ddots & \vdots \\ a_{ m 1 } & a_{ m 2 } & \ldots & a_{ m n } \end{pmatrix}} { }
eine
\definitionsverweis {Matrix}{}{}
über $R$. Zeige, dass die Matrix einen
\definitionsverweis {Gruppenhomomorphismus}{}{}
\maabbdisp {} {R^n} {R^m
} {}
definiert, indem man
\mathdisp {\begin{pmatrix} x_1 \\x_2\\ \vdots\\x_n \end{pmatrix} \longmapsto \begin{pmatrix} a_{11 } & a_{1 2} & \ldots & a_{1 n } \\
a_{21 } & a_{2 2} & \ldots & a_{2 n } \\
\vdots & \vdots & \ddots & \vdots \\ a_{ m 1 } & a_{ m 2 } & \ldots & a_{ m n } \end{pmatrix} \begin{pmatrix} x_1 \\x_2\\ \vdots\\x_n \end{pmatrix}} { }
anwendet, wobei
\mavergleichskettedisp
{\vergleichskette
{ \begin{pmatrix} a_{11 } & a_{1 2} & \ldots & a_{1 n } \\
a_{21 } & a_{2 2} & \ldots & a_{2 n } \\
\vdots & \vdots & \ddots & \vdots \\ a_{ m 1 } & a_{ m 2 } & \ldots & a_{ m n } \end{pmatrix} \begin{pmatrix} x_1 \\x_2\\ \vdots\\x_n \end{pmatrix}
}
{ =} { \begin{pmatrix} \sum_{i = 1}^n a_{1 i} x_i \\ \sum_{i = 1}^n a_{2 i} x_i \\ \vdots\\ \sum_{i = 1}^n a_{m i} x_i \end{pmatrix}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
ist.
}
{} {}
\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Chocolates.jpg} }
\end{center}
\bildtext {} }
\bildlizenz { Chocolates.jpg } {} {Sujit kumar} {Commons} {CC-by-sa 4.0} {}
\inputaufgabe
{}
{
In einer Kekspackung befinden sich Schokokekse, Waffelröllchen, Mandelsterne und Nougatringe. Die Kalorien, der Vitamin C-Gehalt und der Anteil an linksdrehenden Fettsäuren werden durch folgende Tabelle
\zusatzklammer {in geeigneten Maßeinheiten} {} {}
wiedergegeben:
\tabellefuenfvier {\zeileundvier {Sorte} {Kalorien} {Vitamin C} {Fett} }
{\zeileundvier {Schokokeks} {10} {5} {3} }
{\zeileundvier {Waffelröllchen} {8} {7} {6} }
{\zeileundvier {Mandelstern} {7} {3} {1} }
{\zeileundvier {Nougatring} {12} {0} {5} }
a) Beschreibe mit einer Matrix die Abbildung, die zu einem Verzehrtupel
\mathl{(x,y,z,w)}{} das Aufnahmetupel
\mathl{(K,V,F)}{} berechnet.
b) Heinz isst $100$ Schokokekse. Berechne seine Vitaminaufnahme.
c) Ludmilla isst $10$ Nougatringe und $11$ Waffelröllchen. Berechne ihre Gesamtaufnahme an Nährstoffen.
d) Peter isst $5$ Mandelsterne mehr und $7$ Schokokekse weniger als Fritz. Bestimme die Differenz ihrer Kalorienaufnahme.
}
{} {}
Matrizen werden miteinander multipliziert, indem jede Zeile der linken Matrix mit jeder Spalte der rechten Matrix gemäß der Merkregel
\mavergleichskettedisp
{\vergleichskette
{ (Z E I L E) \begin{pmatrix} S \\P\\ A\\L\\ T \end{pmatrix}
}
{ =} { ZS+EP+IA+LL+ET
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
multipliziert wird
\zusatzklammer {insbesondere muss die Spaltenanzahl der linken Matrix mit der Zeilenanzahl der rechten Matrix übereinstimmen} {} {}
und das Ergebnis an die entsprechende Stelle gesetzt wird.
\inputaufgabe
{}
{
Berechne das
\definitionsverweis {Matrizenprodukt}{}{}
\mathdisp {\begin{pmatrix} Z & E & I & L & E \\ R & E & I & H & E \\ H & O & R & I & Z \\ O & N & T & A & L \end{pmatrix} \cdot \begin{pmatrix} S & E & I \\ P & V & K \\ A & E & A \\ L & R & A \\ T & T & L \end{pmatrix}} { . }
}
{} {}
\inputaufgabe
{}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{}
und sei
\mavergleichskettedisp
{\vergleichskette
{ M
}
{ =} { { \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a,b,c,d \in K , \, ad -bc \neq 0 \right\} }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
die Menge aller invertierbaren
$2 \times 2$-\definitionsverweis {Matrizen}{}{.}
a) Zeige \zusatzklammer {ohne Bezug zur Determinante} {} {,} dass $M$ mit der \definitionsverweis {Matrizenmultiplikation}{}{} eine \definitionsverweis {Gruppe}{}{} bildet.
b) Zeige
\zusatzklammer {ohne Bezug zur Determinante} {} {,}
dass die Abbildung
\maabbeledisp {} { M } { K^{\times}
} { \begin{pmatrix} a & b \\ c & d \end{pmatrix} } { ad-bc
} {,}
ein
\definitionsverweis {Gruppenhomomorphismus}{}{}
ist.
}
{} {}
\inputaufgabe
{}
{
Es sei $M$ eine
\definitionsverweis {endliche Menge}{}{}
und $T \subseteq M$ eine Teilmenge, und es seien
\mathkor {} {\operatorname{Perm} \,( T)} {und} {\operatorname{Perm} \,( M)} {}
die zugehörigen
\definitionsverweis {Permutationsgruppen}{}{ (also die Menge aller bijektiven Abbildungen auf $M$, siehe
Aufgabe 1.5.)}
Zeige, dass durch
\maabbeledisp {\Psi} { \operatorname{Perm} \,( T) } { \operatorname{Perm} \,( M)
} {\varphi} { \tilde{\varphi }
} {,}
mit
\mavergleichskettedisp
{\vergleichskette
{\tilde{\varphi} (x)
}
{ =} { \begin{cases} \varphi(x),\, \text{falls } x \in T, \\ x \text{ sonst}, \end{cases}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
ein
\definitionsverweis {injektiver}{}{}
\definitionsverweis {Gruppenhomomorphismus}{}{}
gegeben ist.
}
{} {}
\inputaufgabe
{}
{
Es sei $G$ eine
\definitionsverweis {Gruppe}{}{}
und
\mathl{h \in G}{.} Zeige, dass die Abbildung
\maabbeledisp {} {G} {G
} {g} {hgh^{-1}
} {,}
eine
\definitionsverweis {Gruppenautomorphismus}{}{}
ist.
}
{} {}
Die Automorphismen der vorstehenden Aufgabe nennt man auch \stichwort {innere Automorphismen} {.}
\inputaufgabe
{}
{
Es sei $G$ eine
\definitionsverweis {Gruppe}{}{}
und sei
\mavergleichskette
{\vergleichskette
{ g
}
{ \in }{ G
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ein Element und sei
\maabbeledisp {\varphi} { G } { G
} { h } { hg
} {,}
die Multiplikation mit $g$. Zeige, dass $\varphi$ bijektiv ist, und dass $\varphi$ genau dann ein
\definitionsverweis {Gruppenhomomorphismus}{}{}
ist, wenn
\mavergleichskette
{\vergleichskette
{ g
}
{ = }{ e_G
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist.
}
{} {}
\zwischenueberschrift{Aufgaben zum Abgeben}
\inputaufgabe
{3 (1+2)}
{
Es seien $G_1 , \ldots , G_n$ \definitionsverweis {Gruppen}{}{.}
a) Definiere eine Gruppenstruktur auf dem Produkt
\mathdisp {G_1 \times \cdots \times G_n} { . }
b) Es sei $H$ eine weitere Gruppe. Zeige, dass eine Abbildung \maabbeledisp {\varphi} {H} {G_1 \times \cdots \times G_n } {x} { \varphi(x)= (\varphi_1(x) , \ldots , \varphi_n(x)) } {,} genau dann ein \definitionsverweis {Gruppenhomomorphismus}{}{} ist, wenn alle Komponenten $\varphi_i$ Gruppenhomomorphismen sind.
}
{} {}
\inputaufgabe
{4}
{
Bestimme die \definitionsverweis {Gruppenhomomorphismen}{}{} von \mathkor {} {(\Q,+,0)} {nach} {(\Z,+,0)} {.}
}
{} {}
Die folgende Aufgabe knüpft an
Aufgabe 1.20
an. Zu einer reellen Zahl $x$ bezeichnet
\mathl{\lfloor x \rfloor}{} die größte ganze Zahl, die kleiner oder gleich $x$ ist.
\inputaufgabe
{3}
{
Wir betrachten
\mavergleichskettedisp
{\vergleichskette
{M
}
{ =} { { \left\{ q \in \Q \mid 0 \leq q < 1 \right\} }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit der in
Aufgabe 1.17
definierten Verknüpfung, die nach
Aufgabe 1.20
eine
\definitionsverweis {Gruppe}{}{}
ist. Zeige, dass die Abbildung
\maabbeledisp {} {\Q} {M
} {q} { q - \lfloor q \rfloor
} {,}
ein
\definitionsverweis {Gruppenhomomorphismus}{}{}
ist.
}
{} {}
\inputaufgabe
{2}
{
Bestimme für jedes
\mathl{n \in \N}{} den
\definitionsverweis {Kern}{}{}
des Potenzierens
\maabbeledisp {} {\R^\times} { \R^\times} {z} {z^n
} {.}
}
{} {}
\inputaufgabe
{1}
{
Zeige, dass es keinen
\definitionsverweis {Gruppenhomomorphismus}{}{}
\maabbdisp {\varphi} {(\R,0,+)} {G
} {}
in eine Gruppe $G$ mit der Eigenschaft gibt, dass
\mathl{r \in \R}{} genau dann
\definitionsverweis {irrational}{}{}
ist, wenn
\mathl{\varphi(r)=0}{} ist.
}
{} {}