Kurs:Funktionentheorie/Lemma von Schwarz

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Das Lemma von Schwarz ist eine Aussage über das Wachstumsverhalten holomorpher Funktionen auf der Einheitskreisscheibe.

Aussage[Bearbeiten]

Es sei die Einheitskreisscheibe und holomorph mit . Dann gilt:

  • für alle
  • Gilt oder für ein , so ist eine Drehung, d. h. es existiert ein mit , so dass , .

Beweis[Bearbeiten]

Definiere durch

Dann ist stetig, also nach dem Riemannschen Hebbarkeitssatz auch holomorph. Sei , dann ist nach dem Maximumprinzip also für :

Für ergibt sich die Ungleichung , also für alle gilt, das zeigt die ersten beiden Aussagen.

Gilt in einem der Beiden Fälle Gleichheit, so hat also im inneren von ein lokales Maximum, nach dem Maximumprinzip ist also konstant, und diese Konstante hat den Betrag , es folgt die Behauptung.

Vgl. Fischer S. 286.

siehe auch[Bearbeiten]