Kurs:Invariantentheorie (Osnabrück 2012-2013)/Arbeitsblatt 8/latex
\setcounter{section}{8}
\zwischenueberschrift{Aufwärmaufgaben}
\inputaufgabe
{}
{
Es seien
\mathl{M \subseteq N}{} kommutative Monoide. Zeige, dass durch
\mavergleichskettedisp
{\vergleichskette
{ \tilde{M}
}
{ =} { { \left\{ n \in N \mid \text{es gibt } k \in \N_+ \text{ mit } kn \in M \right\} }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
ein Untermonoid von $N$ gegeben ist, das $M$ umfasst.
}
{} {}
\inputaufgabe
{}
{
Wir betrachten die kommutativen Monoide
\mathl{M=\N^r}{} und
\mathl{N={\mathbb N}^s}{.} Zeige, dass ein Monoidhomomorphismus von $M$ nach $N$ eindeutig durch eine Matrix (mit $r$ Spalten und $s$ Zeilen) mit Einträgen aus $\N$ bestimmt ist.
}
{} {}
\inputaufgabe
{}
{
Es sei $M$ ein kommutatives
\definitionsverweis {Monoid}{}{.}
Zeige, dass die zugehörige
\definitionsverweis {Differenzengruppe}{}{}
\mathl{\Gamma=\Gamma(M)}{} eine kommutative
\definitionsverweis {Gruppe}{}{}
ist, und dass sie folgende universelle Eigenschaft besitzt: Zu jedem
\definitionsverweis {Monoidhomomorphismus}{}{}
\maabbdisp {\varphi} {M} {G
} {}
in eine Gruppe $G$ gibt es einen eindeutig bestimmten
\definitionsverweis {Gruppenhomomorphismus}{}{}
\maabbdisp {\tilde{\varphi}} {\Gamma} {G
} {,}
der $\varphi$ fortsetzt.
}
{} {}
\inputaufgabe
{}
{
Es sei $M$ ein kommutatives
\definitionsverweis {Monoid}{}{}
mit zugehöriger
\definitionsverweis {Differenzengruppe}{}{}
\mathl{\Gamma=\Gamma(M)}{.} Zeige, dass folgende Aussagen äquivalent sind.
\aufzaehlungdrei{$M$ ist ein
\definitionsverweis {Monoid mit Kürzungsregel}{}{.}
}{Die kanonische Abbildung
\maabb {} {M} {\Gamma(M)} {}
ist injektiv.
}{$M$ lässt sich als Untermonoid einer Gruppe realisieren.
}
}
{} {}
\inputaufgabe
{}
{
Es sei $R$ ein kommutativer Ring. Beweise die
$R$-\definitionsverweis {Algebraiso\-mor\-phie}{}{}
\mavergleichskettedisp
{\vergleichskette
{ R[\Z^n]
}
{ \cong} { R[X_1 , \ldots , X_n]_{X_1 \cdots X_n}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit Hilfe der universellen Eigenschaften von Monoidringen und Nenneraufnahmen.
}
{} {}
\zwischenueberschrift{Aufgaben zum Abgeben}
\inputaufgabe
{}
{
Es sei $K$ ein Körper und $G$ eine Gruppe. Dann können wir den
\definitionsverweis {Monoidring}{}{}
$K[G]$ betrachten. Es sei nun weiter $M$ ein $K[G]$-Modul. Zeige, dass
\aufzaehlungzwei { $M$ nichts anderes ist als ein $K$-Vektorraum $V$ zusammen mit einem
\definitionsverweis {Gruppenhomomorphismus}{}{}
\maabb {\rho} { G} { \operatorname{Aut}_K(V)
} {.}
} {ein $K[G]$-Modulhomomorphismus
\maabb {\varphi} {M} {M
} {}
eine $K$-lineare Abbildung ist, für die zusätzlich
\mavergleichskette
{\vergleichskette
{ \varphi \circ \rho(g)
}
{ = }{ \rho \circ \varphi
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
für alle
\mavergleichskette
{\vergleichskette
{ g
}
{ \in }{ G
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
gilt.
}
}
{Bemerkung: $\rho$ heißt dann eine \stichwort {Darstellung} {} von $G$. Solche Darstellungen sind oft einfacher zu handhaben als $G$ und man kann mit Hilfe von $\rho$ oft hilfreiche Erkenntnisse über $G$ selbst gewinnen.} {}
<< | Kurs:Invariantentheorie (Osnabrück 2012-2013) | >> |
---|