Kurs:Körper- und Galoistheorie (Osnabrück 2011)/Polynomring in einer Variablen/Textabschnitt/latex

Aus Wikiversity

\setcounter{section}{1}






\zwischenueberschrift{Der Polynomring über einem Körper}




\inputdefinition
{}
{

Der \definitionswort {Polynomring}{} über einem \definitionsverweis {Körper}{}{} $K$ besteht aus allen Polynomen
\mavergleichskettedisp
{\vergleichskette
{P }
{ =} { a_0 + a_1X+a_2X^2 + \cdots + a_nX^n }
{ } { }
{ } { }
{ } { }
} {}{}{} mit
\mathl{a_i \in K}{,}
\mathl{n \in \N}{,} und mit komponentenweiser Addition und einer Multiplikation, die durch distributive Fortsetzung der Regel
\mavergleichskettedisp
{\vergleichskette
{ X^n \cdot X^m }
{ \defeq} { X^{n+m} }
{ } { }
{ } { }
{ } { }
} {}{}{} definiert ist.

}

Ein Polynom
\mavergleichskettedisp
{\vergleichskette
{P }
{ =} { \sum_{ i = 0 }^{ n } a_{ i } X^{ i } }
{ =} { a_0 + a_1X + \cdots + a_{ n } X^{ n } }
{ } { }
{ } { }
} {}{}{} ist formal gesehen nichts anderes als das Tupel
\mathl{(a_0,a_1 , \ldots , a_n )}{,} die die \stichwort {Koeffizienten} {} des Polynoms heißen. Zwei Polynome sind genau dann gleich, wenn sie in allen ihren Koeffizienten übereinstimmen. Der Körper $K$ heißt in diesem Zusammenhang der \stichwort {Grundkörper} {} des Polynomrings. Aufgrund der komponentenweisen Definition der Addition liegt unmittelbar eine Gruppe vor, mit dem \stichwort {Nullpolynom} {} \zusatzklammer {bei dem alle Koeffizienten $0$ sind} {} {} als neutralem Element. Die Polynome mit
\mavergleichskettedisp
{\vergleichskette
{a_i }
{ =} { 0 }
{ } { }
{ } { }
{ } { }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{i }
{ \geq }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} heißen \stichwort {konstante Polynome} {,} man schreibt sie einfach als $a_0$.

Die für ein einfaches Tupel zunächst ungewöhnliche Schreibweise deutet in suggestiver Weise an, wie die Multiplikation aussehen soll, das Produkt
\mathl{X^{n} \cdot X^{m}}{} ist nämlich durch die Addition der Exponenten gegeben. Dabei nennt man $X$ die \stichwort {Variable} {} des Polynomrings. Für beliebige Polynome ergibt sich die Multiplikation aus dieser einfachen Multiplikationsbedingung durch distributive Fortsetzung gemäß der Vorschrift, \anfuehrung{alles mit allem}{} zu multiplizieren. Die Multiplikation ist also explizit durch folgende Regel gegeben:
\mathdisp {{ \left( \sum_{ i = 0 }^{ n } a_{ i } X^{ i } \right) } \cdot { \left( \sum_{ j = 0 }^{ m } b_{ j } X^{ j } \right) } = \sum_{ k = 0 }^{ n+m } c_{ k } X^{ k } \text{ mit } c_{ k} =\sum_{ r= 0}^{ k } a_{ r } b_{ k - r }} { . }
Die Multiplikation ist assoziativ, kommutativ, distributiv und besitzt das konstante Polynom $1$ als neutrales Element, siehe Aufgabe *****.






\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Polynomialdeg5.svg} }
\end{center}
\bildtext {Der Graph einer Polynomfunktion von $\R$ nach $\R$ vom Grad $5$.} }

\bildlizenz { Polynomialdeg5.svg } {} {Geek3} {Commons} {CC-by-sa 3.0} {}

In ein Polynom
\mavergleichskette
{\vergleichskette
{P }
{ \in }{K[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} kann man ein Element
\mavergleichskette
{\vergleichskette
{a }
{ \in }{K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \stichwort {einsetzen} {,} indem man die Variable $X$ an jeder Stelle durch $a$ ersetzt. Dies führt zu einer Abbildung \maabbeledisp {} {K} {K } {a} {P(a) } {,} die die durch das Polynom definierte \stichwort {Polynomfunktion} {} heißt.




\inputdefinition
{}
{

Der \definitionswort {Grad}{} eines von $0$ verschiedenen Polynoms
\mavergleichskettedisp
{\vergleichskette
{P }
{ =} {a_0 + a_1X+a_2X^2 + \cdots + a_nX^n }
{ } { }
{ } { }
{ } { }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{a_n }
{ \neq }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist $n$.

}

Das Nullpolynom bekommt keinen Grad. Der Koeffizient $a_n$, der zum Grad $n$ des Polynoms gehört, heißt \stichwort {Leitkoeffizient} {} des Polynoms. Der Ausdruck
\mathl{a_nX^n}{} heißt \stichwort {Leitterm} {.}





\inputfaktbeweis
{Polynomring_über_Körper/Eine_Variable/Division_mit_Rest/Fakt}
{Satz}
{}
{

\faktsituation {}
\faktvoraussetzung {Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Es seien
\mavergleichskette
{\vergleichskette
{P,T }
{ \in }{ K[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} Polynome mit
\mavergleichskette
{\vergleichskette
{T }
{ \neq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\faktfolgerung {Dann gibt es eindeutig bestimmte Polynome
\mavergleichskette
{\vergleichskette
{Q,R }
{ \in }{ K[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit
\mathdisp {P = T Q + R \text{ und mit } \operatorname{grad} \, (R) < \operatorname{grad} \, (T) \text{ oder } R = 0} { . }
}
\faktzusatz {}
\faktzusatz {}

}
{

Wir beweisen die Existenzaussage durch Induktion über den \definitionsverweis {Grad}{}{} von $P$. Wenn der Grad von $T$ größer als der Grad von $P$ ist, so ist \mathkor {} {Q=0} {und} {R=P} {} eine Lösung, so dass wir dies nicht weiter betrachten müssen. Bei
\mavergleichskette
{\vergleichskette
{ \operatorname{grad} \, (P) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist nach der Vorbemerkung auch
\mavergleichskette
{\vergleichskette
{ \operatorname{grad} \, (TP) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} also ist $T$ ein konstantes Polynom, und damit ist \zusatzklammer {da
\mavergleichskettek
{\vergleichskettek
{T }
{ \neq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und $K$ ein Körper ist} {} {} \mathkor {} {Q=P/T} {und} {R=0} {} eine Lösung. Es sei nun
\mavergleichskette
{\vergleichskette
{ \operatorname{grad} \, (P) }
{ = }{ n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und die Aussage für kleineren Grad schon bewiesen. Wir schreiben \mathkor {} {P= a_nX^n + \cdots + a_1X+a_0} {und} {T= b_kX^k + \cdots + b_1X+b_0} {} mit
\mathl{a_n, b_k \neq 0,\, k \leq n}{.} Dann gilt mit
\mavergleichskette
{\vergleichskette
{ H }
{ = }{ { \frac{ a_n }{ b_k } } X^{n-k} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Beziehung
\mavergleichskettealignhandlinks
{\vergleichskettealignhandlinks
{ P' }
{ \defeq} { P-TH }
{ =} { 0X^n + { \left( a_{n-1} - \frac{a_n}{b_k} b_{k-1} \right) } X^{n-1} + \cdots + { \left( a_{n-k} - \frac{a_n}{b_k} b_{0} \right) } X^{n-k} + a_{n-k-1}X^{n-k-1} + \cdots + a_0 }
{ } { }
{ } { }
} {} {}{.} Dieses Polynom $P'$ hat einen Grad kleiner als $n$ und darauf können wir die Induktionsvoraussetzung anwenden, d.h. es gibt \mathkor {} {Q'} {und} {R'} {} mit
\mathdisp {P' = T Q' + R' \text{ mit } \operatorname{grad} \, (R') < \operatorname{grad} \, (T) \text{ oder } R' = 0} { . }
Daraus ergibt sich insgesamt
\mavergleichskettedisp
{\vergleichskette
{ P }
{ =} { P'+TH }
{ =} { TQ'+TH+R' }
{ =} { T(Q'+H)+R' }
{ } {}
} {}{}{,} so dass also
\mavergleichskette
{\vergleichskette
{ Q }
{ = }{ Q'+H }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{ R }
{ = }{ R' }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine Lösung ist. \teilbeweis {}{}{}
{Zur Eindeutigkeit sei
\mavergleichskette
{\vergleichskette
{ P }
{ = }{ TQ+R }
{ = }{ TQ'+R' }
{ }{ }
{ }{ }
} {}{}{} mit den angegebenen Bedingungen. Dann ist
\mavergleichskette
{\vergleichskette
{ T(Q-Q') }
{ = }{ R'-R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Da die Differenz
\mathl{R'-R}{} einen Grad kleiner als
\mathl{\operatorname{grad} \, (T)}{} besitzt, ist aufgrund der Gradeigenschaften diese Gleichung nur bei
\mavergleichskette
{\vergleichskette
{ R }
{ = }{ R' }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{ Q }
{ = }{ Q' }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} lösbar.}
{}

}






\inputfaktbeweis
{Polynomring (Körper)/Nullstellen/Linearer Faktor/Fakt}
{Lemma}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Es sei
\mavergleichskette
{\vergleichskette
{P }
{ \in }{ K[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein Polynom und
\mavergleichskette
{\vergleichskette
{a }
{ \in }{K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}}
\faktfolgerung {Dann ist $a$ genau dann eine \definitionsverweis {Nullstelle}{}{} von $P$, wenn $P$ ein Vielfaches des linearen Polynoms
\mathl{X-a}{} ist.}
\faktzusatz {}
\faktzusatz {}

}
{

Wenn $P$ ein Vielfaches von
\mathl{X-a}{} ist, so kann man
\mavergleichskettedisp
{\vergleichskette
{P }
{ =} {(X-a)Q }
{ } { }
{ } { }
{ } { }
} {}{}{} mit einem weiteren Polynom $Q$ schreiben. Einsetzen ergibt
\mavergleichskettedisp
{\vergleichskette
{ P(a) }
{ =} { (a-a) Q(a) }
{ =} { 0 }
{ } { }
{ } { }
} {}{}{.} Im Allgemeinen gibt es aufgrund der Division mit Rest eine Darstellung
\mavergleichskettedisp
{\vergleichskette
{ P }
{ =} { (X-a)Q +R }
{ } { }
{ } { }
{ } { }
} {}{}{,} wobei
\mavergleichskette
{\vergleichskette
{ R }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} oder aber den Grad $0$ besitzt, also so oder so eine Konstante ist. Einsetzen ergibt
\mavergleichskettedisp
{\vergleichskette
{ P(a) }
{ =} { R }
{ } { }
{ } { }
{ } { }
} {}{}{.} Wenn also
\mavergleichskette
{\vergleichskette
{ P(a) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist, so muss der Rest
\mavergleichskette
{\vergleichskette
{ R }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} sein, und das bedeutet, dass
\mavergleichskette
{\vergleichskette
{ P }
{ = }{ (X-a)Q }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist.

}





\inputfaktbeweis
{Polynomring (Körper)/Nullstellen/Anzahl/Fakt}
{Korollar}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Es sei
\mavergleichskette
{\vergleichskette
{P }
{ \in }{K[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein Polynom \zusatzklammer {\mathlk{\neq 0}{}} {} {} vom \definitionsverweis {Grad}{}{} $d$.}
\faktfolgerung {Dann besitzt $P$ maximal $d$ Nullstellen.}
\faktzusatz {}
\faktzusatz {}

}
{

Wir beweisen die Aussage durch Induktion über $d$. Für
\mavergleichskette
{\vergleichskette
{ d }
{ = }{ 0,1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist die Aussage offensichtlich richtig. Es sei also
\mavergleichskette
{\vergleichskette
{d }
{ \geq }{2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und die Aussage sei für kleinere Grade bereits bewiesen. Es sei $a$ eine Nullstelle von $P$ \zusatzklammer {falls $P$ keine Nullstelle besitzt, sind wir direkt fertig} {} {.} Dann ist
\mavergleichskette
{\vergleichskette
{ P }
{ = }{ Q(X-a) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} nach Lemma Anhang 1.4 und $Q$ hat den Grad
\mathl{d-1}{,} so dass wir auf $Q$ die Induktionsvoraussetzung anwenden können. Das Polynom $Q$ hat also maximal
\mathl{d-1}{} Nullstellen. Für
\mavergleichskette
{\vergleichskette
{b }
{ \in }{K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gilt
\mavergleichskette
{\vergleichskette
{ P(b) }
{ = }{ Q(b)(b-a) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Dies kann nach Fakt *****  (5) nur dann $0$ sein, wenn einer der Faktoren $0$ ist, so dass eine Nullstelle von $P$ gleich $a$ ist oder aber eine Nullstelle von $Q$ ist. Es gibt also maximal $d$ Nullstellen von $P$.

}


\inputfaktbeweis
{Polynom/K/Produkt von linearen Polynomen und nullstellenfrei/Fakt}
{Korollar}
{}
{

\faktsituation {Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$.}
\faktfolgerung {Dann besitzt jedes
\mathl{P \in K[X],\, P \neq 0,}{} eine Produktzerlegung
\mathdisp {P= (X- \lambda_1)^{\mu_1} \cdots (X- \lambda_k)^{\mu_k} \cdot Q} { }
mit
\mathl{\mu_j \geq 1}{} und einem nullstellenfreien Polynom $Q$.}
\faktzusatz {Dabei sind die auftretenden verschiedenen Zahlen
\mathl{\lambda_1 , \ldots , \lambda_k}{} und die zugehörigen Exponenten
\mathl{\mu_1 , \ldots , \mu_k}{} \zusatzklammer {bis auf die Reihenfolge} {} {} eindeutig bestimmt.}
\faktzusatz {}

}
{ Siehe Aufgabe 17.7 (Mathematik (Osnabrück 2009-2011)). }

Es gilt allgemeiner, dass die Zerlegung eines Polynoms in irreduzible Faktoren im Wesentlichen eindeutig ist. Der Polynomring
\mathl{K[X]}{} ist ein kommutativer Ring, aber kein Körper.