Kurs:Körper- und Galoistheorie (Osnabrück 2011)/Polynomring in einer Variablen/Textabschnitt/latex
\setcounter{section}{1}
\zwischenueberschrift{Der Polynomring über einem Körper}
\inputdefinition
{}
{
Der \definitionswort {Polynomring}{} über einem
\definitionsverweis {Körper}{}{}
$K$ besteht aus allen Polynomen
\mavergleichskettedisp
{\vergleichskette
{P
}
{ =} { a_0 + a_1X+a_2X^2 + \cdots + a_nX^n
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit
\mavergleichskette
{\vergleichskette
{ a_i
}
{ \in }{ K
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{,}
\mavergleichskette
{\vergleichskette
{ n
}
{ \in }{ \N
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{,}
und mit komponentenweiser Addition und einer Multiplikation, die durch distributive Fortsetzung der Regel
\mavergleichskettedisp
{\vergleichskette
{ X^n \cdot X^m
}
{ \defeq} { X^{n+m}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
definiert ist.
}
Ein Polynom
\mavergleichskettedisp
{\vergleichskette
{P
}
{ =} { \sum_{ i = 0 }^{ n } a_{ i } X^{ i }
}
{ =} { a_0 + a_1X + a_2X^2 + \cdots + a_{ n } X^{ n }
}
{ } {
}
{ } {
}
}
{}{}{}
ist formal gesehen nichts anderes als das Tupel
\mathl{(a_0,a_1 , \ldots , a_n )}{,} die die \stichwort {Koeffizienten} {} des Polynoms heißen. Zwei Polynome sind genau dann gleich, wenn sie in allen ihren Koeffizienten übereinstimmen. Der Körper $K$ heißt in diesem Zusammenhang der \stichwort {Grundkörper} {} des Polynomrings. Aufgrund der komponentenweisen Definition der Addition liegt unmittelbar eine Gruppe vor, mit dem \stichwort {Nullpolynom} {}
\zusatzklammer {bei dem alle Koeffizienten $0$ sind} {} {}
als neutralem Element. Die Polynome mit
\mavergleichskettedisp
{\vergleichskette
{a_i
}
{ =} { 0
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
für alle
\mavergleichskette
{\vergleichskette
{i
}
{ \geq }{1
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
heißen \stichwort {konstante Polynome} {,} man schreibt sie einfach als $a_0$.
Die für ein einfaches Tupel zunächst ungewöhnliche Schreibweise deutet in suggestiver Weise an, wie die Multiplikation aussehen soll, das Produkt
\mathl{X^{n} \cdot X^{m}}{} ist nämlich durch die Addition der Exponenten gegeben. Dabei nennt man $X$ die \stichwort {Variable} {} des Polynomrings. Für beliebige Polynome ergibt sich die Multiplikation aus dieser einfachen Multiplikationsbedingung durch distributive Fortsetzung gemäß der Vorschrift, \anfuehrung{alles mit allem}{} zu multiplizieren. Die Multiplikation ist also explizit durch folgende Regel gegeben:
\mathdisp {{ \left( \sum_{ i = 0 }^{ n } a_{ i } X^{ i } \right) } \cdot { \left( \sum_{ j = 0 }^{ m } b_{ j } X^{ j } \right) } = \sum_{ k = 0 }^{ n+m } c_{ k } X^{ k } \text{ mit } c_{ k} =\sum_{ r= 0}^{ k } a_{ r } b_{ k - r }} { . }
Die Multiplikation ist assoziativ, kommutativ, distributiv und besitzt das konstante Polynom $1$ als neutrales Element, siehe
Aufgabe *****.
\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Polynomialdeg5.svg} }
\end{center}
\bildtext {Der Graph einer Polynomfunktion von $\R$ nach $\R$ vom Grad $5$.} }
\bildlizenz { Polynomialdeg5.svg } {} {Geek3} {Commons} {CC-by-sa 3.0} {}
In ein Polynom
\mavergleichskette
{\vergleichskette
{P
}
{ \in }{K[X]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
kann man ein Element
\mavergleichskette
{\vergleichskette
{a
}
{ \in }{K
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
\stichwort {einsetzen} {,} indem man die Variable $X$ an jeder Stelle durch $a$ ersetzt. Dies führt zu einer Abbildung
\maabbeledisp {} {K} {K
} {a} {P(a)
} {,}
die die durch das Polynom definierte \stichwort {Polynomfunktion} {} heißt.
\inputdefinition
{}
{
Der \definitionswort {Grad}{} eines von $0$ verschiedenen Polynoms
\mavergleichskettedisp
{\vergleichskette
{P
}
{ =} {a_0 + a_1X+a_2X^2 + \cdots + a_nX^n
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit
\mavergleichskette
{\vergleichskette
{a_n
}
{ \neq }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist $n$.
}
Das Nullpolynom bekommt keinen Grad. Der Koeffizient $a_n$, der zum Grad $n$ des Polynoms gehört, heißt \stichwort {Leitkoeffizient} {} des Polynoms. Der Ausdruck
\mathl{a_nX^n}{} heißt \stichwort {Leitterm} {.}
\inputfaktbeweis
{Polynomring_über_Körper/Eine_Variable/Division_mit_Rest/Fakt}
{Satz}
{}
{
\faktsituation {}
\faktvoraussetzung {Es sei $K$ ein
\definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Es seien
\mavergleichskette
{\vergleichskette
{P,T
}
{ \in }{ K[X]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
Polynome mit
\mavergleichskette
{\vergleichskette
{T
}
{ \neq }{0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}}
\faktfolgerung {Dann gibt es eindeutig bestimmte Polynome
\mavergleichskette
{\vergleichskette
{Q,R
}
{ \in }{ K[X]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
mit
\mathdisp {P = T Q + R \text{ und mit } \operatorname{grad} \, (R) < \operatorname{grad} \, (T)
\text{ oder } R = 0} { . }
}
\faktzusatz {}
\faktzusatz {}
}
{
Wir beweisen die Existenzaussage durch Induktion über den
\definitionsverweis {Grad}{}{}
von $P$. Wenn der Grad von $T$ größer als der Grad von $P$ ist, so ist
\mathkor {} {Q=0} {und} {R=P} {}
eine Lösung, sodass wir dies nicht weiter betrachten müssen. Bei
\mavergleichskette
{\vergleichskette
{ \operatorname{grad} \, (P)
}
{ = }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist nach der Vorbemerkung auch
\mavergleichskette
{\vergleichskette
{ \operatorname{grad} \, (TP)
}
{ = }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{,}
also ist $T$ ein konstantes Polynom, und damit ist
\zusatzklammer {da
\mavergleichskettek
{\vergleichskettek
{T
}
{ \neq }{0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und $K$ ein Körper ist} {} {}
\mathkor {} {Q=P/T} {und} {R=0} {}
eine Lösung. Es sei nun
\mavergleichskette
{\vergleichskette
{ \operatorname{grad} \, (P)
}
{ = }{ n
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und die Aussage für kleineren Grad schon bewiesen. Wir schreiben
\mathkor {} {P= a_nX^n + \cdots + a_1X+a_0} {und} {T= b_kX^k + \cdots + b_1X+b_0} {}
mit
\mathl{a_n, b_k \neq 0,\, k \leq n}{.} Dann gilt mit
\mavergleichskette
{\vergleichskette
{ H
}
{ = }{ { \frac{ a_n }{ b_k } } X^{n-k}
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
die Beziehung
\mavergleichskettealignhandlinks
{\vergleichskettealignhandlinks
{ P'
}
{ \defeq} { P-TH
}
{ =} { 0X^n + { \left( a_{n-1} - \frac{a_n}{b_k} b_{k-1} \right) } X^{n-1} + \cdots + { \left( a_{n-k} - \frac{a_n}{b_k} b_{0} \right) } X^{n-k} + a_{n-k-1}X^{n-k-1} + \cdots + a_0
}
{ } {
}
{ } {
}
}
{}
{}{.}
Dieses Polynom $P'$ hat einen Grad kleiner als $n$ und darauf können wir die Induktionsvoraussetzung anwenden, d.h. es gibt
\mathkor {} {Q'} {und} {R'} {}
mit
\mathdisp {P' = T Q' + R' \text{ mit } \operatorname{grad} \, (R') < \operatorname{grad} \, (T)
\text{ oder } R' = 0} { . }
Daraus ergibt sich insgesamt
\mavergleichskettedisp
{\vergleichskette
{ P
}
{ =} { P'+TH
}
{ =} { TQ'+TH+R'
}
{ =} { T(Q'+H)+R'
}
{ } {}
}
{}{}{,}
sodass also
\mavergleichskette
{\vergleichskette
{ Q
}
{ = }{ Q'+H
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ R
}
{ = }{ R'
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
eine Lösung ist.
\teilbeweis {}{}{}
{Zur Eindeutigkeit sei
\mavergleichskette
{\vergleichskette
{ P
}
{ = }{ TQ+R
}
{ = }{ TQ'+R'
}
{ }{
}
{ }{
}
}
{}{}{}
mit den angegebenen Bedingungen. Dann ist
\mavergleichskette
{\vergleichskette
{ T(Q-Q')
}
{ = }{ R'-R
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Da die Differenz
\mathl{R'-R}{} einen Grad kleiner als
\mathl{\operatorname{grad} \, (T)}{} besitzt, ist aufgrund der Gradeigenschaften diese Gleichung nur bei
\mavergleichskette
{\vergleichskette
{ R
}
{ = }{ R'
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ Q
}
{ = }{ Q'
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
lösbar.}
{}
\inputfaktbeweis
{Polynomring (Körper)/Nullstellen/Linearer Faktor/Fakt}
{Lemma}
{}
{
\faktsituation {Es sei $K$ ein
\definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Es sei
\mavergleichskette
{\vergleichskette
{P
}
{ \in }{ K[X]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ein Polynom und
\mavergleichskette
{\vergleichskette
{a
}
{ \in }{K
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}}
\faktfolgerung {Dann ist $a$ genau dann eine
\definitionsverweis {Nullstelle}{}{}
von $P$, wenn $P$ ein Vielfaches des linearen Polynoms
\mathl{X-a}{} ist.}
\faktzusatz {}
\faktzusatz {}
}
{
Wenn $P$ ein Vielfaches von
\mathl{X-a}{} ist, so kann man
\mavergleichskettedisp
{\vergleichskette
{P
}
{ =} {(X-a)Q
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit einem weiteren Polynom $Q$ schreiben. Einsetzen ergibt
\mavergleichskettedisp
{\vergleichskette
{ P(a)
}
{ =} { (a-a) Q(a)
}
{ =} { 0
}
{ } {
}
{ } {
}
}
{}{}{.}
Im Allgemeinen gibt es
aufgrund der Division mit Rest
eine Darstellung
\mavergleichskettedisp
{\vergleichskette
{ P
}
{ =} { (X-a)Q +R
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
wobei
\mavergleichskette
{\vergleichskette
{ R
}
{ = }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
oder aber den Grad $0$ besitzt, also so oder so eine Konstante ist. Einsetzen ergibt
\mavergleichskettedisp
{\vergleichskette
{ P(a)
}
{ =} { R
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
Wenn also
\mavergleichskette
{\vergleichskette
{ P(a)
}
{ = }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist, so muss der Rest
\mavergleichskette
{\vergleichskette
{ R
}
{ = }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
sein, und das bedeutet, dass
\mavergleichskette
{\vergleichskette
{ P
}
{ = }{ (X-a)Q
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist.
\inputfaktbeweis
{Polynomring (Körper)/Nullstellen/Anzahl/Fakt}
{Korollar}
{}
{
\faktsituation {Es sei $K$ ein
\definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Es sei
\mavergleichskette
{\vergleichskette
{P
}
{ \in }{K[X]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ein Polynom
\zusatzklammer {\mathlk{\neq 0}{}} {} {}
vom
\definitionsverweis {Grad}{}{}
$d$.}
\faktfolgerung {Dann besitzt $P$ maximal $d$ Nullstellen.}
\faktzusatz {}
\faktzusatz {}
}
{
Wir beweisen die Aussage durch Induktion über $d$. Für
\mavergleichskette
{\vergleichskette
{ d
}
{ = }{ 0,1
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist die Aussage offensichtlich richtig. Es sei also
\mavergleichskette
{\vergleichskette
{d
}
{ \geq }{2
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und die Aussage sei für kleinere Grade bereits bewiesen. Es sei $a$ eine Nullstelle von $P$
\zusatzklammer {falls $P$ keine Nullstelle besitzt, sind wir direkt fertig} {} {.}
Dann ist
\mavergleichskette
{\vergleichskette
{ P
}
{ = }{ Q(X-a)
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
nach
Lemma Anhang 1.4
und $Q$ hat den Grad
\mathl{d-1}{,} sodass wir auf $Q$ die Induktionsvoraussetzung anwenden können. Das Polynom $Q$ hat also maximal
\mathl{d-1}{} Nullstellen. Für
\mavergleichskette
{\vergleichskette
{b
}
{ \in }{K
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
gilt
\mavergleichskette
{\vergleichskette
{ P(b)
}
{ = }{ Q(b)(b-a)
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Dies kann nach
Fakt ***** (5)
nur dann $0$ sein, wenn einer der Faktoren $0$ ist, sodass eine Nullstelle von $P$ gleich $a$ ist oder aber eine Nullstelle von $Q$ ist. Es gibt also maximal $d$ Nullstellen von $P$.
{Polynom/K/Produkt von linearen Polynomen und nullstellenfrei/Fakt}
{Korollar}
{}
{
\faktsituation {Es sei $K$ ein
\definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$.}
\faktfolgerung {Dann besitzt jedes
\mathl{P \in K[X],\, P \neq 0,}{} eine Produktzerlegung
\mathdisp {P= (X- \lambda_1)^{\mu_1} \cdots (X- \lambda_k)^{\mu_k} \cdot Q} { }
mit
\mathl{\mu_j \geq 1}{} und einem nullstellenfreien Polynom $Q$.}
\faktzusatz {Dabei sind die auftretenden verschiedenen Zahlen
\mathl{\lambda_1 , \ldots , \lambda_k}{} und die zugehörigen Exponenten
\mathl{\mu_1 , \ldots , \mu_k}{}
\zusatzklammer {bis auf die Reihenfolge} {} {} eindeutig bestimmt.}
\faktzusatz {}
{ Siehe Aufgabe 17.7 (Mathematik (Osnabrück 2009-2011)). }
Es gilt allgemeiner, dass die Zerlegung eines Polynoms in irreduzible Faktoren im Wesentlichen eindeutig ist. Der Polynomring
\mathl{K[X]}{} ist ein kommutativer Ring, aber kein Körper.