Zum Inhalt springen

Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil I/Arbeitsblatt 19/latex

Aus Wikiversity

\setcounter{section}{19}






\zwischenueberschrift{Die Pausenaufgabe}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Wie lautet das Ergebnis der Division mit Rest, wenn man ein Polynom $P$ durch $X^m$ teilt?

}
{} {}






\zwischenueberschrift{Übungsaufgaben}




\inputaufgabe
{}
{

Berechne im \definitionsverweis {Polynomring}{}{} ${\mathbb C}[X]$ das Produkt
\mathdisp {((4+{ \mathrm i})X^2-3X+9{ \mathrm i}) \cdot ((-3+7{ \mathrm i})X^2+(2+2{ \mathrm i})X-1+6{ \mathrm i})} { . }

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Zeige, dass die Multiplikation auf
\mathl{K[X]}{} assoziativ, kommutativ und distributiv ist und dass das \zusatzklammer {konstante} {} {} Polynom $1$ neutrales Element der Multiplikation ist.

}
{} {}




\inputaufgabe
{}
{

Berechne das Ergebnis, wenn man im \definitionsverweis {Polynom}{}{}
\mathdisp {2X^3-5X^2-4X+7} { }
die Variable $X$ durch die \definitionsverweis {komplexe Zahl}{}{} $2-5{ \mathrm i}$ ersetzt.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Es sei
\mavergleichskette
{\vergleichskette
{ a }
{ \in }{ K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige, dass die Einsetzungsabbildung, also die Zuordnung \maabbeledisp {\psi} {K[X]} {K } {P} {P(a) } {,} folgende Eigenschaften erfüllt \zusatzklammer {dabei seien
\mavergleichskette
{\vergleichskette
{ P,Q }
{ \in }{ K[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{}} {} {.} \aufzaehlungdrei{
\mavergleichskettedisp
{\vergleichskette
{ (P+Q)(a) }
{ =} { P(a)+Q(a) }
{ } { }
{ } { }
{ } { }
} {}{}{.} }{
\mavergleichskettedisp
{\vergleichskette
{ (P \cdot Q)(a) }
{ =} { P(a) \cdot Q(a) }
{ } { }
{ } { }
{ } { }
} {}{}{.} }{
\mavergleichskettedisp
{\vergleichskette
{ 1 (a) }
{ =} { 1 }
{ } { }
{ } { }
{ } { }
} {}{}{.} }

}
{} {}




\inputaufgabe
{}
{

Zeige, dass in einem \definitionsverweis {Polynomring}{}{} über einem \definitionsverweis {Körper}{}{} $K$ gilt: Wenn
\mavergleichskette
{\vergleichskette
{ P,Q }
{ \in }{ K[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} beide ungleich $0$ sind, so ist auch
\mavergleichskette
{\vergleichskette
{ PQ }
{ \neq }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Zeige, dass der \definitionsverweis {Grad}{}{} folgende Eigenschaften erfüllt. \aufzaehlungzwei {
\mavergleichskettedisp
{\vergleichskette
{ \operatorname{grad} \, (P+Q) }
{ \leq} { \max \{ \operatorname{grad} \, (P),\, \operatorname{grad} \, (Q)\} }
{ } { }
{ } { }
{ } { }
} {}{}{,} } {
\mavergleichskettedisp
{\vergleichskette
{ \operatorname{grad} \, (P \cdot Q) }
{ =} { \operatorname{grad} \, (P) + \operatorname{grad} \, (Q) }
{ } { }
{ } { }
{ } { }
} {}{}{.} }

}
{} {}




\inputaufgabe
{}
{

Schreibe das \definitionsverweis {Polynom}{}{}
\mathdisp {X^3+2X^2-3X+4} { }
in der neuen Variablen
\mavergleichskette
{\vergleichskette
{ U }
{ = }{ X+2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}
{} {}




\inputaufgabe
{}
{

Schreibe das \definitionsverweis {Polynom}{}{}
\mathdisp {Z^3-(2+ { \mathrm i})Z^2 +3{ \mathrm i}Z+4- 5{ \mathrm i}} { }
in der neuen Variablen
\mavergleichskette
{\vergleichskette
{ W }
{ = }{ Z+ 2- { \mathrm i} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}
{} {}




\inputaufgabe
{}
{

Führe in $\Q[X]$ die \definitionsverweis {Division mit Rest}{}{} \anfuehrung{$P$ durch $T$}{} für die beiden \definitionsverweis {Polynome}{}{} \mathkor {} {P=3X^4+7X^2-2X+5} {und} {T=2X^2+3X-1} {} durch.

}
{} {}

Der Körper
\mathl{\Z/(7)}{} wurde in Beispiel 3.9 vorgestellt.


\inputaufgabe
{}
{

Führe in $\Z/(7)[X]$ die \definitionsverweis {Division mit Rest}{}{} \anfuehrung{$P$ durch $T$}{} für die beiden \definitionsverweis {Polynome}{}{} \mathkor {} {P=5X^4+3X^3+5X^2+3X+6} {und} {T=3X^2+6X+4} {} durch.

}
{} {}




\inputaufgabegibtloesung
{}
{

Man bestimme sämtliche komplexen Nullstellen des Polynoms
\mathdisp {X^3-1} { }
und man gebe die Primfaktorzerlegung von diesem Polynom in $\R[X]$ und in ${\mathbb C}[X]$ an.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{ P }
{ \in }{ \R[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein \definitionsverweis {Polynom}{}{} mit \definitionsverweis {reellen}{}{} Koeffizienten und sei
\mavergleichskette
{\vergleichskette
{ z }
{ \in }{ {\mathbb C} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine \definitionsverweis {Nullstelle}{}{} von $P$. Zeige, dass dann auch die \definitionsverweis {konjugiert-komplexe Zahl}{}{} $\overline{ z }$ eine Nullstelle von $P$ ist.

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Zeige, dass jedes Polynom
\mathbed {P \in K[X]} {}
{P \neq 0} {}
{} {} {} {,} eine Produktzerlegung
\mavergleichskettedisp
{\vergleichskette
{ P }
{ =} { (X- \lambda_1)^{\mu_1} \cdots (X- \lambda_k)^{\mu_k} \cdot Q }
{ } { }
{ } { }
{ } { }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{ \mu_j }
{ \geq }{ 1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und einem nullstellenfreien Polynom $Q$ besitzt, wobei die auftretenden verschiedenen Zahlen
\mathl{\lambda_1 , \ldots , \lambda_k}{} und die zugehörigen Exponenten
\mathl{\mu_1 , \ldots , \mu_k}{} bis auf die Reihenfolge eindeutig bestimmt sind.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$ und sei
\mavergleichskette
{\vergleichskette
{ P }
{ \in }{ K[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein Polynom, das eine Zerlegung in Linearfaktoren besitze. Es sei $T$ ein \definitionsverweis {Teiler}{}{} von $P$. Zeige, dass $T$ ebenfalls eine Zerlegung in Linearfaktoren besitzt, wobei die Vielfachheit eines Linearfaktors
\mathl{X-a}{} in $T$ durch seine Vielfachheit in $P$ beschränkt ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

Zeige, dass es zu ganzen Zahlen $d,n$ mit
\mavergleichskette
{\vergleichskette
{ d }
{ > }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eindeutig bestimmte ganze Zahlen $q,r$ mit
\mavergleichskette
{\vergleichskette
{ 0 }
{ \leq }{ r }
{ < }{ d }
{ }{ }
{ }{ }
} {}{}{} und mit
\mavergleichskettedisp
{\vergleichskette
{ n }
{ =} { dq+r }
{ } { }
{ } { }
{ } { }
} {}{}{} gibt.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{ F }
{ \in }{ {\mathbb C}[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein \definitionsverweis {nichtkonstantes}{}{} \definitionsverweis {Polynom}{}{.} Zeige, dass $F$ in \definitionsverweis {Linearfaktoren}{}{} zerfällt.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{ P }
{ \in }{ {\mathbb C}[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein nichtkonstantes Polynom. Zeige, dass die Abbildung \maabbeledisp {} { {\mathbb C} } { {\mathbb C} } { z } { P(z) } {,} surjektiv ist.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über einem Körper
\mathl{K}{.} Zeige, dass die Menge
\mathdisp {{ \left\{ { \frac{ P }{ Q } } \mid P,Q \in K[X] , \, Q \neq 0 \right\} }} { , }
wobei zwei Brüche
\mathl{{ \frac{ P }{ Q } }}{} und
\mathl{{ \frac{ P' }{ Q' } }}{} genau dann als gleich gelten, wenn
\mavergleichskette
{\vergleichskette
{ P Q' }
{ = }{ P' Q }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist, mit einer geeigneten Addition und Multiplikation ein Körper ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es seien die beiden komplexen Polynome
\mathdisp {P=X^3-2 { \mathrm i} X^2+4X-1 \text{ und } Q= { \mathrm i} X-3+2 { \mathrm i}} { }
gegeben. Berechne
\mathl{P(Q)}{} \zusatzklammer {es soll also $Q$ in $P$ eingesetzt werden} {} {.}

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die Hintereinanderschaltung \zusatzklammer {also das Einsetzen eines Polynoms in ein weiteres} {} {} von zwei Polynomen wieder ein Polynom ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es seien \maabbdisp {f,g,h} {\R} {\R } {} Funktionen.

a) Zeige die Gleichheit
\mavergleichskettedisp
{\vergleichskette
{ { \left( h \cdot g \right) } \circ f }
{ =} { { \left( h \circ f \right) } \cdot { \left( g \circ f \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{.}


b) Zeige durch ein Beispiel, dass die Gleichheit
\mavergleichskettedisp
{\vergleichskette
{ { \left( h \circ g \right) } \cdot f }
{ =} { { \left( h \cdot f \right) } \circ { \left( g \cdot f \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{} nicht gelten muss.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über einem Körper
\mathl{K}{.} Zeige, dass die Menge
\mathdisp {{ \left\{ { \frac{ P }{ Q } } \mid P,Q \in K[X] , \, Q \neq 0 \right\} }} { , }
wobei zwei Brüche
\mathl{{ \frac{ P }{ Q } }}{} und
\mathl{{ \frac{ P' }{ Q' } }}{} genau dann als gleich gelten, wenn
\mavergleichskette
{\vergleichskette
{ P Q' }
{ = }{ P' Q }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist, mit einer geeigneten Addition und Multiplikation ein Körper ist.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die \definitionsverweis {Hintereinanderschaltung}{}{} von zwei \definitionsverweis {rationalen Funktionen}{}{} wieder rational ist.

}
{} {}




\inputaufgabe
{}
{

Berechne die \definitionsverweis {Hintereinanderschaltungen}{}{} \mathkor {} {f \circ g} {und} {g \circ f} {} der beiden \definitionsverweis {rationalen Funktionen}{}{}
\mathdisp {f(x)= { \frac{ 2x^2-4x+3 }{ x-2 } } \text{ und } g(x)= { \frac{ x+1 }{ x^2-4 } }} { . }

}
{} {}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{3}
{

Berechne im \definitionsverweis {Polynomring}{}{} ${\mathbb C}[X]$ das Produkt
\mathdisp {{ \left( (4+{ \mathrm i})X^3- { \mathrm i}X^2+2X+3+2{ \mathrm i} \right) } \cdot { \left( (2-{ \mathrm i})X^3+(3-5 { \mathrm i})X^2+(2+{ \mathrm i})X+1+5{ \mathrm i} \right) }} { . }

}
{} {}




\inputaufgabe
{4}
{

Führe in ${\mathbb C}[X]$ die \definitionsverweis {Division mit Rest}{}{} \anfuehrung{$P$ durch $T$}{} für die beiden \definitionsverweis {Polynome}{}{} \mathkor {} {P=(5+ { \mathrm i} )X^4+ { \mathrm i} X^2+(3-2 { \mathrm i} )X-1} {und} {T=X^2+ { \mathrm i} X+3- { \mathrm i}} {} durch.

}
{} {}




\inputaufgabe
{3}
{

Führe in $\Z/(7)[X]$ die \definitionsverweis {Division mit Rest}{}{} \anfuehrung{$P$ durch $T$}{} für die beiden \definitionsverweis {Polynome}{}{} \mathkor {} {P=6X^4+2X^3+4X^2+2X+5} {und} {T=5X^2+3X+2} {} durch.

}
{} {}




\inputaufgabe
{2}
{

Beweise die Formel
\mavergleichskettedisp
{\vergleichskette
{ X^{u}+1 }
{ =} {(X+1) { \left( X^{u-1}-X^{u-2}+X^{u-3}- \cdots + X^2 - X +1 \right) } }
{ } { }
{ } { }
{ } { }
} {}{}{} für $u$ ungerade.

}
{} {}




\inputaufgabe
{4}
{

Es sei
\mavergleichskette
{\vergleichskette
{ P }
{ \in }{ \R[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ein \definitionsverweis {nichtkonstantes}{}{} \definitionsverweis {Polynom}{}{} mit \definitionsverweis {reellen}{}{} Koeffizienten. Zeige, dass man $P$ als ein Produkt von reellen Polynomen vom Grad \mathkor {} {1} {oder} {2} {} schreiben kann.

}
{} {}

<< | Kurs:Lineare Algebra (Osnabrück 2015-2016)/Teil I | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)