Zum Inhalt springen

Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I/Arbeitsblatt 18/latex

Aus Wikiversity

\setcounter{section}{18}






\zwischenueberschrift{Aufwärmaufgaben}




\inputaufgabe
{}
{

Zeige die folgenden Eigenschaften von \definitionsverweis {Sinus hyperbolicus}{}{} und \definitionsverweis {Kosinus hyperbolicus}{}{} \aufzaehlungdrei{
\mathdisp {\cosh x + \sinh x = e^x} { . }
}{
\mathdisp {\cosh x - \sinh x = e^{-x }} { . }
}{
\mathdisp {( \cosh x )^2 - ( \sinh x )^2 = 1} { . }
}

}
{} {}




\inputaufgabegibtloesung
{}
{

Zeige, dass der \definitionsverweis {Sinus hyperbolicus}{}{} auf $\R$ \definitionsverweis {streng wachsend}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass der \definitionsverweis {Tangens hyperbolicus}{}{} die Abschätzungen
\mathdisp {-1 \leq \tanh x \leq 1 \text{ für alle } x \in \R} { }
erfüllt.

}
{} {}




\inputaufgabegibtloesung
{}
{

Beweise elementargeometrisch den \stichwort {Sinussatz} {,} also die Aussage, dass in einem \definitionsverweis {nichtausgearteten Dreieck}{}{} die Gleichheiten
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ a }{ \sin \alpha } } }
{ =} { { \frac{ b }{ \sin \beta } } }
{ =} { { \frac{ c }{ \sin \gamma } } }
{ } { }
{ } { }
} {}{}{} gelten, wobei
\mathl{a,b,c}{} die Seitenlängen gegenüber den Ecken mit den Winkeln
\mathl{\alpha, \beta, \gamma}{} sind.

}
{} {}




\inputaufgabe
{}
{

Bestimme die \definitionsverweis {Determinanten}{}{} von \definitionsverweis {ebenen}{}{} und von \definitionsverweis {räumlichen Drehungen}{}{.}

}
{} {}




\inputaufgabegibtloesung
{}
{

Beweise die Additionstheoreme für den \definitionsverweis {Sinus}{}{} und den \definitionsverweis {Kosinus}{}{} unter Verwendung von \definitionsverweis {Drehmatrizen}{}{.}

}
{} {}




\inputaufgabe
{}
{

Wir betrachten eine Uhr mit Minuten- und Sekundenzeiger, die sich beide kontinuierlich bewegen. Bestimme eine Formel, die aus der Winkelstellung des Minutenzeigers die Winkelstellung des Sekundenzeigers \zusatzklammer {jeweils ausgehend von der 12-Uhr-Stellung im Uhrzeigersinn gemessen} {} {} berechnet.

}
{} {}




\inputaufgabegibtloesung
{}
{

Zeige, dass die \definitionsverweis {Reihe}{}{}
\mathdisp {\sum_{n=1}^\infty { \frac{ \sin n }{ n^2 } }} { }
\definitionsverweis {konvergiert}{}{.}

}
{} {}




\inputaufgabe
{}
{

Bestimme die Koeffizienten bis zu $z^6$ in der \definitionsverweis {Produktreihe}{}{} $\sum _{ n= 0}^\infty c_n z^{ n }$ aus der \definitionsverweis {Sinusreihe}{}{} und der \definitionsverweis {Kosinusreihe}{}{.}

}
{} {}

Die nächsten Aufgaben verwenden die Definition einer \stichwort {periodischen Funktion} {.}


Eine \definitionsverweis {Funktion}{}{} \maabb {f} {\R} {\R } {} heißt \definitionswort {periodisch}{} mit \definitionswort {Periode}{}
\mavergleichskette
{\vergleichskette
{L }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} wenn für alle
\mavergleichskette
{\vergleichskette
{x }
{ \in }{\R }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} die Gleichheit
\mavergleichskettedisp
{\vergleichskette
{ f(x) }
{ =} { f(x+L) }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.





\inputaufgabe
{}
{

Es sei \maabbdisp {f} {\R} {\R } {} eine \definitionsverweis {periodische Funktion}{}{} und \maabbdisp {g} {\R} {\R } {} eine beliebige Funktion.

a) Zeige, dass die \definitionsverweis {Hintereinanderschaltung}{}{}
\mathl{g \circ f}{} wieder periodisch ist.

b) Zeige, dass die Hintereinanderschaltung
\mathl{f \circ g}{} nicht periodisch sein muss.

}
{} {}




\inputaufgabe
{}
{

Es sei \maabb {f} {\R} {\R } {} eine \definitionsverweis {stetige}{}{} \definitionsverweis {periodische Funktion}{}{.} Zeige, dass $f$ beschränkt ist.

}
{} {}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{3}
{

Zeige, dass in der \definitionsverweis {Potenzreihe}{}{}
\mathl{\sum_{n= 0}^\infty c_nx^n}{} des \definitionsverweis {Kosinus hyperbolicus}{}{} die Koeffizienten $c_n$ für ungerades $n$ gleich $0$ sind.

}
{} {}




\inputaufgabe
{3}
{

Zeige, dass der \definitionsverweis {Kosinus hyperbolicus}{}{} auf $\R_{\leq 0}$ \definitionsverweis {streng fallend}{}{} und auf $\R_{\geq 0}$ \definitionsverweis {streng wachsend}{}{} ist.

}
{} {}




\inputaufgabe
{4}
{

Es sei \maabbdisp {\varphi} {\R^3} {\R^3 } {} die \definitionsverweis {Drehung}{}{} des Raumes um die $z$-Achse um $45$ Grad gegen den Uhrzeigersinn. Wie sieht die \definitionsverweis {beschreibende Matrix}{}{} bezüglich der \definitionsverweis {Basis}{}{}
\mathdisp {\begin{pmatrix} 1 \\2\\ 4 \end{pmatrix} ,\, \begin{pmatrix} 3 \\3\\ -1 \end{pmatrix} ,\, \begin{pmatrix} 5 \\0\\ 7 \end{pmatrix}} { }
aus?

}
{} {}




\inputaufgabe
{6}
{

Beweise das Additionstheorem
\mavergleichskettedisp
{\vergleichskette
{ \sin (x+y) }
{ =} { \sin x \cdot \cos y + \cos x \cdot \sin y }
{ } { }
{ } { }
{ } { }
} {}{}{} für den Sinus unter Bezug auf die definierenden Potenzreihen.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Es seien \maabbdisp {f_1,f_2} {\R} {\R } {} \definitionsverweis {periodische Funktionen}{}{} mit den Periodenlängen \mathkor {} {L_1} {bzw.} {L_2} {.} Der Quotient
\mathl{L_1/L_2}{} sei eine \definitionsverweis {rationale Zahl}{}{.} Zeige, dass auch
\mathl{f_1+f_2}{} eine periodische Funktion ist.

}
{} {}




\inputaufgabe
{5}
{

Es seien $n$ komplexe Zahlen
\mathl{z_1,z_2 , \ldots , z_n}{} in der Kreisscheibe $B$ mit Mittelpunkt $(0,0)$ und Radius $1$, also in
\mavergleichskette
{\vergleichskette
{ B }
{ = }{ { \left\{ z \in {\mathbb C} \mid \betrag { z } \leq 1 \right\} } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} gegeben. Zeige, dass es einen Punkt
\mavergleichskette
{\vergleichskette
{ w }
{ \in }{ B }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} mit der Eigenschaft
\mavergleichskettedisp
{\vergleichskette
{ \sum_{i = 1}^n \betrag { z_i-w } }
{ \geq} { n }
{ } { }
{ } { }
{ } { }
} {}{}{} gibt.

}
{} {}



<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I | >>

PDF-Version dieses Arbeitsblattes (PDF englisch)

Zur Vorlesung (PDF)