Kurs:Mathematik für Anwender (Osnabrück 2019-2020)/Teil I/Vorlesung 6/latex
\setcounter{section}{6}
\epigraph { In theory, 'theory' and 'praxis' are the same, in praxis they aren't } { }
\zwischenueberschrift{Polynome}
Mathematische Abbildungen werden typischerweise durch einen mathematischen Ausdruck beschrieben, eine Funktionsvorschrift, die angibt, wie aus einer eingegebenen Zahl \zusatzklammer {Stelle, Argument} {} {} eine Zahl als Wert \zusatzklammer {Ergebnis} {} {} der Funktion zu berechnen ist. Wir besprechen nun die am einfachsten gebauten Funktionen, die Polynomfunktionen. Deren Definition erfordert nur die Kenntnis von Addition und Multiplikation in einem Körper.
\inputdefinition
{}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{.} Ein Ausdruck der Form
\mathbedtermdisp { P=a_0 + a_1X+a_2X^2 + \cdots + a_nX^n }
{ mit } { a_i \in K }
{ und } { n \in \N } { } { } { }
heißt \definitionswort {Polynom in einer Variablen}{} über $K$.
}
Dabei heißen die Zahlen
\mathl{a_0,a_1 , \ldots , a_n}{} die \stichwort {Koeffizienten} {} des Polynoms. Zwei Polynome sind genau dann gleich, wenn sie in allen ihren Koeffizienten übereinstimmen. Die Polynome mit
\mavergleichskette
{\vergleichskette
{a_i
}
{ = }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
für alle
\mavergleichskette
{\vergleichskette
{i
}
{ \geq }{1
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
heißen \stichwort {konstante Polynome} {,} man schreibt sie einfach als $a_0$. Beim \stichwort {Nullpolynom} {} sind überhaupt alle Koeffizienten gleich $0$. Mit dem Summenzeichen kann man ein Polynom kurz als
\mathl{\sum_{ i = 0 }^{ n } a_{ i } X^{ i}}{} schreiben.
\inputdefinition
{}
{
Der \definitionswort {Grad}{} eines von $0$ verschiedenen Polynoms
\mavergleichskettedisp
{\vergleichskette
{P
}
{ =} {a_0 + a_1X+a_2X^2 + \cdots + a_nX^n
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit
\mavergleichskette
{\vergleichskette
{a_n
}
{ \neq }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist $n$.
}
Das Nullpolynom bekommt keinen Grad. Der Koeffizient $a_n$, der zum Grad $n$ des Polynoms gehört, heißt \stichwort {Leitkoeffizient} {} des Polynoms. Der Ausdruck
\mathl{a_nX^n}{} heißt \stichwort {Leitterm} {} des Polynoms.
Die Gesamtheit aller Polynome über einem Körper $K$ heißt \stichwort {Polynomring} {} über $K$, er wird mit
\mathl{K[X]}{} bezeichnet. Dabei nennt man $X$ die \stichwort {Variable} {} des Polynomrings.
Zwei Polynome
\mathdisp {P= \sum_{ i = 0 }^{ n } a_{ i } X^{ i} \text{ und } Q=\sum_{ i = 0 }^{ m } b_{ i } X^{ i}} { }
werden komponentenweise miteinander addiert, d.h. die Koeffizienten der Summe
\mathl{P+Q}{} sind einfach die Summe der Koeffizienten der beiden Polynome. Bei
\mavergleichskette
{\vergleichskette
{ n
}
{ > }{ m
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
sind die \anfuehrung{fehlenden}{} Koeffizienten von $Q$ als $0$ zu interpretieren. Diese Addition ist offenbar assoziativ und kommutativ, das Nullpolynom ist das neutrale Element und das negative Polynom $-P$ erhält man, indem man jeden Koeffizienten von $P$ negiert.
Zwei Polynome lassen sich auch miteinander multiplizieren, wobei man
\mavergleichskettedisp
{\vergleichskette
{ X^n \cdot X^m
}
{ \defeq} { X^{n+m}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
setzt und diese Multiplikationsregel \anfuehrung{distributiv fortsetzt}{,} d.h. man multipliziert \anfuehrung{alles mit allem}{} und muss dann aufaddieren. Die Multiplikation ist also explizit durch folgende Regel gegeben:
\mathdisp {{ \left( \sum_{ i = 0 }^{ n } a_{ i } X^{ i } \right) } \cdot { \left( \sum_{ j = 0 }^{ m } b_{ j } X^{ j } \right) } = \sum_{ k = 0 }^{ n+m } c_{ k } X^{ k } \text{ mit } c_{ k} =\sum_{ r= 0}^{ k } a_{ r } b_{ k - r }} { . }
Für den Grad gelten die beiden folgenden Regeln
\auflistungzwei{
\mavergleichskettedisp
{\vergleichskette
{ \operatorname{grad} \, (P+Q)
}
{ \leq} { \max \{ \operatorname{grad} \, (P),\, \operatorname{grad} \, (Q) \}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}{
\mavergleichskettedisp
{\vergleichskette
{ \operatorname{grad} \, (P \cdot Q)
}
{ =} { \operatorname{grad} \, (P) + \operatorname{grad} \, (Q)
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Polynomialdeg5.svg} }
\end{center}
\bildtext {Der Graph einer Polynomfunktion von $\R$ nach $\R$ vom Grad $5$.} }
\bildlizenz { Polynomialdeg5.svg } {} {Geek3} {Commons} {CC-by-sa 3.0} {}
In ein Polynom
\mavergleichskette
{\vergleichskette
{ P
}
{ \in }{ K[X]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
kann man ein Element
\mavergleichskette
{\vergleichskette
{ a
}
{ \in }{ K
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
\stichwort {einsetzen} {,} indem man die Variable $X$ an jeder Stelle durch $a$ ersetzt. Dies führt zu einer Abbildung
\maabbeledisp {} {K} {K
} {a} {P(a)
} {,}
die die durch das Polynom definierte \stichwort {Polynomfunktion} {} heißt.
Wenn
\mathkor {} {P} {und} {Q} {}
Polynome sind, so kann man die Hintereinanderschaltung
\mathl{P \circ Q}{} einfach beschreiben: man muss in $P$ überall die Variable $X$ durch $Q$ ersetzen
\zusatzklammer {und alles ausmultiplizieren und aufaddieren} {} {.}
Das Ergebnis ist wieder ein Polynom. Man beachte, dass es dabei auf die Reihenfolge ankommt.
\zwischenueberschrift{Division mit Rest}
Bei einem Polynom interessiert man sich für Nullstellen, Wachstumsverhalten, lokale Extrema und dergleichen. Für diese Fragestellungen ist die Division mit Rest wichtig.
\inputfaktbeweis
{Polynomring_über_Körper/Eine_Variable/Division_mit_Rest/Fakt}
{Satz}
{}
{
\faktsituation {}
\faktvoraussetzung {Es sei $K$ ein
\definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Es seien
\mavergleichskette
{\vergleichskette
{P,T
}
{ \in }{ K[X]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
Polynome mit
\mavergleichskette
{\vergleichskette
{T
}
{ \neq }{0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}}
\faktfolgerung {Dann gibt es eindeutig bestimmte Polynome
\mavergleichskette
{\vergleichskette
{Q,R
}
{ \in }{ K[X]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
mit
\mathdisp {P = T Q + R \text{ und mit } \operatorname{grad} \, (R) < \operatorname{grad} \, (T)
\text{ oder } R = 0} { . }
}
\faktzusatz {}
\faktzusatz {}
}
{
Wir beweisen die Existenzaussage durch Induktion über den
\definitionsverweis {Grad}{}{}
von $P$. Wenn der Grad von $T$ größer als der Grad von $P$ ist, so ist
\mathkor {} {Q=0} {und} {R=P} {}
eine Lösung, sodass wir dies nicht weiter betrachten müssen. Bei
\mavergleichskette
{\vergleichskette
{ \operatorname{grad} \, (P)
}
{ = }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist nach der Vorbemerkung auch
\mavergleichskette
{\vergleichskette
{ \operatorname{grad} \, (TP)
}
{ = }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{,}
also ist $T$ ein konstantes Polynom, und damit ist
\zusatzklammer {da
\mavergleichskettek
{\vergleichskettek
{T
}
{ \neq }{0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und $K$ ein Körper ist} {} {}
\mathkor {} {Q=P/T} {und} {R=0} {}
eine Lösung. Es sei nun
\mavergleichskette
{\vergleichskette
{ \operatorname{grad} \, (P)
}
{ = }{ n
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und die Aussage für kleineren Grad schon bewiesen. Wir schreiben
\mathkor {} {P= a_nX^n + \cdots + a_1X+a_0} {und} {T= b_kX^k + \cdots + b_1X+b_0} {}
mit
\mathl{a_n, b_k \neq 0,\, k \leq n}{.} Dann gilt mit
\mavergleichskette
{\vergleichskette
{ H
}
{ = }{ { \frac{ a_n }{ b_k } } X^{n-k}
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
die Beziehung
\mavergleichskettealignhandlinks
{\vergleichskettealignhandlinks
{ P'
}
{ \defeq} { P-TH
}
{ =} { 0X^n + { \left( a_{n-1} - \frac{a_n}{b_k} b_{k-1} \right) } X^{n-1} + \cdots + { \left( a_{n-k} - \frac{a_n}{b_k} b_{0} \right) } X^{n-k} + a_{n-k-1}X^{n-k-1} + \cdots + a_0
}
{ } {
}
{ } {
}
}
{}
{}{.}
Dieses Polynom $P'$ hat einen Grad kleiner als $n$ und darauf können wir die Induktionsvoraussetzung anwenden, d.h. es gibt
\mathkor {} {Q'} {und} {R'} {}
mit
\mathdisp {P' = T Q' + R' \text{ mit } \operatorname{grad} \, (R') < \operatorname{grad} \, (T)
\text{ oder } R' = 0} { . }
Daraus ergibt sich insgesamt
\mavergleichskettedisp
{\vergleichskette
{ P
}
{ =} { P'+TH
}
{ =} { TQ'+TH+R'
}
{ =} { T(Q'+H)+R'
}
{ } {}
}
{}{}{,}
sodass also
\mavergleichskette
{\vergleichskette
{ Q
}
{ = }{ Q'+H
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ R
}
{ = }{ R'
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
eine Lösung ist.
\teilbeweis {}{}{}
{Zur Eindeutigkeit sei
\mavergleichskette
{\vergleichskette
{ P
}
{ = }{ TQ+R
}
{ = }{ TQ'+R'
}
{ }{
}
{ }{
}
}
{}{}{}
mit den angegebenen Bedingungen. Dann ist
\mavergleichskette
{\vergleichskette
{ T(Q-Q')
}
{ = }{ R'-R
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Da die Differenz
\mathl{R'-R}{} einen Grad kleiner als
\mathl{\operatorname{grad} \, (T)}{} besitzt, ist aufgrund der Gradeigenschaften diese Gleichung nur bei
\mavergleichskette
{\vergleichskette
{ R
}
{ = }{ R'
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ Q
}
{ = }{ Q'
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
lösbar.}
{}
Die Berechnung der Polynome
\mathkor {} {Q} {und} {R} {}
heißt \stichwort {Polynomdivision} {.} Das Polynom $T$ ist genau dann ein Teiler von $P$, wenn bei der Division mit Rest von $P$ durch $T$ der Rest gleich $0$ ist. Der Beweis des Satzes ist konstruktiv, d.h. es wird in ihm ein Verfahren beschrieben, mit der man die Division mit Rest berechnen kann. Dazu muss man die Rechenoperationen des Grundkörpers $K$ beherrschen. Wir geben dazu ein Beispiel.
\inputbeispiel{}
{
Wir führen die
\definitionsverweis {Polynomdivision}{}{}
\mathdisp {P=6 X^3+X+1 \text{ durch } T= 3X^2+2X-4} { }
\zusatzklammer {über $\Q$} {} {}
durch. Es wird also ein Polynom vom Grad $3$ durch ein Polynom vom Grad $2$ dividiert, d.h. dass der Quotient und auch der Rest
\zusatzklammer {maximal} {} {}
vom Grad $1$ sind. Im ersten Schritt überlegt man, mit welchem Term man $T$ multiplizieren muss, damit das Produkt mit $P$ im Leitterm übereinstimmt. Das ist offenbar $2X$. Das Produkt ist
\mavergleichskettedisp
{\vergleichskette
{ 2X { \left( 3X^2+2X-4 \right) }
}
{ =} { 6X^3 +4 X^2 -8 X
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
Die Differenz von $P$ zu diesem Produkt ist
\mavergleichskettedisphandlinks
{\vergleichskettedisphandlinks
{ 6 X^3+X+1 - { \left( 6X^3 +4 X^2 -8 X \right) }
}
{ =} { -4 X^2 +9X +1
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
Mit diesem Polynom, nennen wir es $P'$, setzen wir die Division durch $T$ fort. Um Übereinstimmung im Leitkoeffizienten zu erhalten, muss man $T$ mit
\mathl{{ \frac{ -4 }{ 3 } }}{} multiplizieren. Dies ergibt
\mavergleichskettedisp
{\vergleichskette
{- { \frac{ 4 }{ 3 } } T
}
{ =} { - { \frac{ 4 }{ 3 } } { \left( 3X^2 +2X-4 \right) }
}
{ =} { -4X^2 - { \frac{ 8 }{ 3 } } X + { \frac{ 16 }{ 3 } }
}
{ } {
}
{ } {
}
}
{}{}{.}
Die Differenz zu $P'$ ist somit
\mavergleichskettedisphandlinks
{\vergleichskettedisphandlinks
{ -4 X^2 +9X +1 - { \left( -4X^2 - { \frac{ 8 }{ 3 } } X + { \frac{ 16 }{ 3 } } \right) }
}
{ =} { { \frac{ 35 }{ 3 } } X - { \frac{ 13 }{ 3 } }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
Dies ist das Restpolynom und somit ist insgesamt
\mavergleichskettedisphandlinks
{\vergleichskettedisphandlinks
{ 6 X^3 +X + 1
}
{ =} { { \left( 3X^2 +2 X-4 \right) } { \left( 2X - { \frac{ 4 }{ 3 } } \right) } + { \frac{ 35 }{ 3 } } X - { \frac{ 13 }{ 3 } }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
\inputfaktbeweis
{Polynomring (Körper)/Nullstellen/Linearer Faktor/Fakt}
{Lemma}
{}
{
\faktsituation {Es sei $K$ ein
\definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Es sei
\mavergleichskette
{\vergleichskette
{P
}
{ \in }{ K[X]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ein Polynom und
\mavergleichskette
{\vergleichskette
{a
}
{ \in }{K
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}}
\faktfolgerung {Dann ist $a$ genau dann eine
\definitionsverweis {Nullstelle}{}{}
von $P$, wenn $P$ ein Vielfaches des linearen Polynoms\zusatzfussnote {\mathlk{X-a}{} heißt dann ein \stichwort {Linearfaktor} {} des Polynoms $P$} {.} {}
\mathl{X-a}{} ist.}
\faktzusatz {}
\faktzusatz {}
}
{
Wenn $P$ ein Vielfaches von
\mathl{X-a}{} ist, so kann man
\mavergleichskettedisp
{\vergleichskette
{P
}
{ =} {(X-a)Q
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit einem weiteren Polynom $Q$ schreiben. Einsetzen ergibt
\mavergleichskettedisp
{\vergleichskette
{ P(a)
}
{ =} { (a-a) Q(a)
}
{ =} { 0
}
{ } {
}
{ } {
}
}
{}{}{.}
Im Allgemeinen gibt es
aufgrund der Division mit Rest
eine Darstellung
\mavergleichskettedisp
{\vergleichskette
{ P
}
{ =} { (X-a)Q +R
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
wobei
\mavergleichskette
{\vergleichskette
{ R
}
{ = }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
oder aber den Grad $0$ besitzt, also so oder so eine Konstante ist. Einsetzen ergibt
\mavergleichskettedisp
{\vergleichskette
{ P(a)
}
{ =} { R
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
Wenn also
\mavergleichskette
{\vergleichskette
{ P(a)
}
{ = }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist, so muss der Rest
\mavergleichskette
{\vergleichskette
{ R
}
{ = }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
sein, und das bedeutet, dass
\mavergleichskette
{\vergleichskette
{ P
}
{ = }{ (X-a)Q
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist.
\inputfaktbeweis
{Polynomring (Körper)/Nullstellen/Anzahl/Fakt}
{Korollar}
{}
{
\faktsituation {Es sei $K$ ein
\definitionsverweis {Körper}{}{} und sei
\mathl{K[X]}{} der \definitionsverweis {Polynomring}{}{} über $K$. Es sei
\mavergleichskette
{\vergleichskette
{P
}
{ \in }{K[X]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ein Polynom
\zusatzklammer {\mathlk{\neq 0}{}} {} {}
vom
\definitionsverweis {Grad}{}{}
$d$.}
\faktfolgerung {Dann besitzt $P$ maximal $d$ Nullstellen.}
\faktzusatz {}
\faktzusatz {}
}
{
Wir beweisen die Aussage durch Induktion über $d$. Für
\mavergleichskette
{\vergleichskette
{ d
}
{ = }{ 0,1
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist die Aussage offensichtlich richtig. Es sei also
\mavergleichskette
{\vergleichskette
{d
}
{ \geq }{2
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und die Aussage sei für kleinere Grade bereits bewiesen. Es sei $a$ eine Nullstelle von $P$
\zusatzklammer {falls $P$ keine Nullstelle besitzt, sind wir direkt fertig} {} {.}
Dann ist
\mavergleichskette
{\vergleichskette
{ P
}
{ = }{ Q(X-a)
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
nach
Lemma 6.5
und $Q$ hat den Grad
\mathl{d-1}{,} sodass wir auf $Q$ die Induktionsvoraussetzung anwenden können. Das Polynom $Q$ hat also maximal
\mathl{d-1}{} Nullstellen. Für
\mavergleichskette
{\vergleichskette
{b
}
{ \in }{K
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
gilt
\mavergleichskette
{\vergleichskette
{ P(b)
}
{ = }{ Q(b)(b-a)
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Dies kann nach
Lemma 4.5 (5)
nur dann $0$ sein, wenn einer der Faktoren $0$ ist, sodass eine Nullstelle von $P$ gleich $a$ ist oder aber eine Nullstelle von $Q$ ist. Es gibt also maximal $d$ Nullstellen von $P$.
\zwischenueberschrift{Der Fundamentalsatz der Algebra}
Es gilt der folgende \stichwort {Fundamentalsatz der Algebra} {,} den wir hier ohne Beweis erwähnen, und der die Wichtigkeit der komplexen Zahlen unterstreicht.
\inputfakt{Fundamentalsatz der Algebra/Nichtkonstantes Polynom/Nullstelle/Fakt}{Satz}{}
{
\faktsituation {}
\faktvoraussetzung {Jedes nichtkonstante
\definitionsverweis {Polynom}{}{}
\mavergleichskette
{\vergleichskette
{P
}
{ \in }{{\mathbb C}[X]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
über den
\definitionsverweis {komplexen Zahlen}{}{}}
\faktfolgerung {besitzt eine
\definitionsverweis {Nullstelle}{}{.}}
\faktzusatz {}
\faktzusatz {}
}
Aus dem Fundamentalsatz der Algebra folgt, dass jedes von $0$ verschiedene Polynom
\mavergleichskette
{\vergleichskette
{P
}
{ \in }{ {\mathbb C}[X]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
in Linearfaktoren zerfällt, d.h. man kann
\mavergleichskettedisp
{\vergleichskette
{ P
}
{ =} { c(X-z_1)(X-z_2) \cdot (X-z_n)
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit eindeutig bestimmten komplexen Zahlen
\mathl{z_1 , \ldots , z_n}{} schreiben
\zusatzklammer {wobei Wiederholungen erlaubt sind} {} {.}
\zwischenueberschrift{Der Interpolationssatz}
Der folgende Satz heißt \stichwort {Interpolationssatz} {} und beschreibt die Interpolation von vorgegebenen Funktionswerten durch Polynome.
\inputfaktbeweis
{Polynom/K/Interpolation/Fakt}
{Satz}
{}
{
\faktsituation {Es sei $K$ ein
\definitionsverweis {Körper}{}{}
und es seien $n$ verschiedene Elemente
\mavergleichskette
{\vergleichskette
{ a_1 , \ldots , a_n
}
{ \in }{ K
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und $n$ Elemente
\mavergleichskette
{\vergleichskette
{ b_1 , \ldots , b_n
}
{ \in }{ K
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
gegeben.}
\faktfolgerung {Dann gibt es ein eindeutiges Polynom
\mavergleichskette
{\vergleichskette
{P
}
{ \in }{ K[X]
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
vom Grad
\mathl{\leq n-1}{} derart, dass
\mavergleichskette
{\vergleichskette
{ P { \left( a_i \right) }
}
{ = }{ b_i
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
für alle $i$ ist.}
\faktzusatz {}
\faktzusatz {}
}
{
Wir beweisen die Existenz und betrachten zuerst die Situation, wo
\mavergleichskette
{\vergleichskette
{b_j
}
{ = }{ 0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ist für alle
\mavergleichskette
{\vergleichskette
{j
}
{ \neq }{i
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
für ein festes $i$. Dann ist
\mathdisp {(X-a_1) \cdots (X-a_{i-1}) (X-a_{i+1}) \cdots (X-a_n)} { }
ein Polynom vom Grad $n-1$, das an den Stellen
\mathl{a_1 , \ldots , a_{i-1}, a_{i+1} , \ldots , a_n}{} den Wert $0$ hat. Das Polynom
\mathdisp {{ \frac{ b_i }{ (a_i-a_1) \cdots (a_{i}-a_{i-1}) (a_{i} -a_{i+1}) \cdots (a_i-a_n) } } (X-a_1) \cdots (X-a_{i-1}) (X-a_{i+1}) \cdots (X-a_n)} { }
hat an diesen Stellen ebenfalls eine Nullstelle, zusätzlich aber noch bei $a_i$ den Wert $b_i$. Nennen wir dieses Polynom $P_i$. Dann ist
\mavergleichskettedisp
{\vergleichskette
{P
}
{ =} {P_1 + P_2 + \cdots + P_n
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
das gesuchte Polynom. An der Stelle $a_i$ gilt ja
\mavergleichskettedisp
{\vergleichskette
{ P_j(a_i)
}
{ =} { 0
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
für
\mavergleichskette
{\vergleichskette
{j
}
{ \neq }{i
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ P_i(a_i)
}
{ = }{b_i
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Die Eindeutigkeit folgt aus Korollar 6.6.
\inputbemerkung
{}
{
Wenn die Daten
\mathl{a_1 , \ldots , a_n}{} und
\mathl{b_1 , \ldots , b_n}{} gegeben sind, so findet man das interpolierende Polynom $P$ vom Grad $\leq n-1$, das es nach
Satz 6.8
geben muss, folgendermaßen: Man macht den Ansatz
\mavergleichskettedisp
{\vergleichskette
{P
}
{ =} {c_0+c_1X +c_2X^2 + \cdots + c_{n-2}X^{n-2}+c_{n-1}X^{n-1}
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
und versucht die unbekannten Koeffizienten
\mathl{c_0 , \ldots , c_{n-1}}{} zu bestimmen. Jeder Interpolationspunkt
\mathl{(a_i,b_i)}{} führt zu einer linearen Gleichung
\mavergleichskettedisp
{\vergleichskette
{ c_0+c_1a_i +c_2a_i^2 + \cdots + c_{n-2} a_i^{n-2}+c_{n-1} a_i^{n-1}
}
{ =} { b_i
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
über $K$. Das entstehende lineare Gleichungssystem besitzt genau eine Lösung
\mathl{(c_0 , \ldots , c_{n-1})}{,} die das Polynom festlegt.
} Lineare Gleichungssysteme werden wir erst später systematisch behandeln, das Eliminationsverfahren oder ein anderes Lösungsverfahren sollte aber aus der Schule bekannt sein.
\zwischenueberschrift{Rationale Funktionen}
Im Polynomring
\mathl{K[X]}{} kann man addieren und multiplizieren, es handelt sich aber nicht um einen Körper, da man von $0$ verschiedene Polynome nicht invertieren kann. Beispielsweise besitzt $X$ kein Inverses, im Polynomring gibt es kein Element $X^{-1}$. Man kann aber mit Hilfe von formal-rationalen Funktionen einen Körper konstruieren. Dazu definiert man
\mavergleichskettedisp
{\vergleichskette
{ K(X)
}
{ \defeq} { { \left\{ \frac{P}{Q} \mid P, Q \in K[X] , \, Q \neq 0 \right\} }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
wobei man zwei Brüche
\mathkor {} {\frac{P}{Q}} {und} {\frac{P'}{Q'}} {}
miteinander identifiziert, wenn
\mavergleichskettedisp
{\vergleichskette
{PQ'
}
{ =} {P'Q
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
ist. Auf diese Weise entsteht der \stichwort {Körper der rationalen Funktionen} {}
\zusatzklammer {über $K$} {} {.}
\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Function-1_x.svg} }
\end{center}
\bildtext {Man kann auch Brüche $P/Q$ von Polynomen als Funktionen auffassen, die außerhalb der Nullstellen des Nenners definiert sind. Das Beispiel zeigt den Graphen der rationalen Funktion $1/X$.} }
\bildlizenz { Function-1 x.svg } {} {Qualc1} {Commons} {CC-by-sa 3.0} {}
Diese Brüche kann man wiederum als sinnvolle Funktionen auffassen, allerdings nicht auf ganz $K$. Der Definitionsbereich besteht vielmehr aus dem Komplement der Nullstellen des Nennerpolynoms.
\inputdefinition
{}
{
Zu
\definitionsverweis {Polynomen}{}{}
\mathbed {P,Q \in \R [X]} {}
{Q \neq 0} {}
{} {} {} {,}
heißt die
\definitionsverweis {Funktion}{}{}
\maabbeledisp {} {D} { \R
} {z} { { \frac{ P(z) }{ Q(z) } }
} {,}
wobei $D$ das
\definitionsverweis {Komplement}{}{}
der
\definitionsverweis {Nullstellen}{}{}
von $Q$ ist, eine \definitionswort {rationale Funktion}{.}
}