Lineare Abbildung/Dimensionsformel/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

Sei . Es sei der Kern der Abbildung und seine Dimension ().

Es sei
eine

Basis von . Aufgrund des Basisergänzungssatzes gibt es Vektoren

derart, dass

eine Basis von ist. Wir behaupten, dass

eine Basis des Bildes ist. Es sei ein Element des Bildes . Dann gibt es ein mit . Dieses lässt sich mit der Basis als

schreiben. Dann ist

so dass sich als Linearkombination der schreiben lässt. Zum Beweis der linearen Unabhängigkeit der , , sei eine Darstellung der Null gegeben,

Dann ist

Also gehört zum Kern der Abbildung und daher kann man

schreiben. Da insgesamt eine Basis von vorliegt, folgt, dass alle Koeffizienten sein müssen, also sind insbesondere .

Zur bewiesenen Aussage