Lineares Differentialgleichungssystem/Konstante Koeffizienten/K/Einführung/Textabschnitt
Falls die Funktionen alle konstant sind, so spricht man von einem linearen Differentialgleichungssystem mit konstanten Koeffizienten, welche im Wesentlichen mit Mitteln der linearen Algebra gelöst werden können. Dazu ist es sinnvoll, von vornherein auch komplexe Koeffizienten zuzulassen.
Eine Differentialgleichung der Form
wobei
eine Matrix mit Einträgen ist, heißt homogene lineare gewöhnliche Differentialgleichung mit konstanten Koeffizienten oder homogenes lineares gewöhnliches Differentialgleichungssystem mit konstanten Koeffizienten.
Es sei ein offenes Intervall. Eine Differentialgleichung der Form
wobei eine Matrix mit Einträgen ist und
eine Abbildung, heißt inhomogene lineare gewöhnliche Differentialgleichung mit konstanten Koeffizienten oder inhomogenes lineares gewöhnliches Differentialgleichungssystem mit konstanten Koeffizienten.
Die Störfunktion muss also nicht konstant sein.
Es sei
eine lineare gewöhnliche Differentialgleichung höherer Ordnung mit konstanten Koeffizienten, d.h. die sind reelle (oder komplexe) Zahlen. Das gemäß Fakt zugehörige Differentialgleichungssystem
mit
und
wird in dieser Situation zum linearen Differentialgleichungssystem mit konstanten Koeffizienten