Zum Inhalt springen

Separables Polynom/Charakterisierung/Fakt/Beweis/Aufgabe/Lösung

Aus Wikiversity


. Dies folgt aus Fakt.
. Nehmen wir an, dass und einen gemeinsamen nichttrivialen Teiler in besitzen. Dies ist dann auch in der Fall. Dies bedeutet wiederum, dass ein Linearfaktor von auch ein Teiler von ist. Daher besitzen und eine gemeinsame Nullstelle und somit besitzt eine mehrfache Nullstelle im Widerspruch zur Voraussetzung.
. Dies folgt aus Fakt.
. Es sei eine Körpererweiterung derart, dass in Linearfaktoren zerfällt. Nach Voraussetzung kann man in als Linearkombination von und

darstellen. Diese Eigenschaft überträgt sich direkt auf . Wenn in eine mehrfache Nullstelle hätte, so wäre diese Nullstelle auch eine Nullstelle der Ableitung. Das kann aber wegen der Darstellbarkeit der nicht sein.