Stetige Funktion/K/Motivation/Einführung/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Den Abstand zwischen zwei reellen (oder komplexen) Zahlen und bezeichnen wir mit

Bei einer Funktion

kann man sich fragen, inwiefern der Abstand in der Wertemenge durch den Abstand in der Definitionsmenge kontrollierbar ist. Es sei und der Bildpunkt. Man möchte, dass für Punkte , die „nahe“ an sind, auch die Bildpunkte „nahe“ an sind. Schon lineare Funktionen mit unterschiedlicher Steigung zeigen, dass die „Nähe“ im Bildbereich nicht mit der „Nähe“ im Definitionsbereich direkt verglichen werden kann. Die Zielsetzung ist vielmehr, dass zu einer gewünschten Genauigkeit im Bildbereich überhaupt eine Ausgangsgenauigkeit gefunden werden kann, die sichert, dass die Funktionswerte innerhalb der gewünschten Genauigkeit beieinander liegen.

Um diese intuitive Vorstellung zu präzisieren, sei ein vorgegeben. Dieses repräsentiert eine „gewünschte Zielgenauigkeit“. Die Frage ist dann, ob man ein finden kann (eine „Startgenauigkeit“) mit der Eigenschaft, dass für alle mit die Beziehung gilt. Dies führt zum Begriff der stetigen Abbildung, den wir parallel für die reellen und die komplexen Zahlen entwickeln. Wir verwenden für und das gemeinsame Symbol und wir betrachten Funktionen

wobei eine Teilmenge ist. Wegen könnte man sich auf beschränken. Allerdings ist die reelle Situation etwas suggestiver und viele komplexe Fragestellungen lassen sich einfach auf den reellen Fall zurückführen, so dass es durchaus erlaubt ist, sich zunächst auf zu beschränken.


Definition  

Es sei eine Teilmenge,

eine Funktion und . Man sagt, dass stetig im Punkt ist, wenn es zu jedem ein derart gibt, dass für alle mit die Abschätzung gilt. Man sagt, dass stetig ist, wenn sie in jedem Punkt stetig ist.

Bei sollte man an den Definitionsbereich der Funktion denken. Typische Situationen sind, dass ganz ist, oder ein reelles Intervall, oder ohne endlich viele Punkte und Ähnliches. Statt mit den nichnegativen reellen Zahlen und kann man genauso gut mit Stammbrüchen und arbeiten.


Beispiel  

Eine konstante Funktion

ist stetig. Zu jedem vorgegeben kann man hier ein beliebiges wählen, da ja ohnehin

gilt.

Die Identität

ist ebenfalls stetig. Zu jedem vorgegebenen und kann man hier wählen, was zu der Tautologie führt: Wenn , so ist


Heaviside.svg


Beispiel  

Wir betrachten die Funktion

mit

Diese Funktion ist im Nullpunkt nicht stetig. Für und jedes beliebige positive gibt es nämlich negative Zahlen mit . Für diese ist aber .


Nicht jede stetige Funktion kann man zeichnen, auch nicht nach beliebiger Vergrößerung. Gezeigt wird eine Approximation einer Weierstraß-Funktion, die stetig, aber nirgendwo differenzierbar ist. Bei einer stetigen Funktion kann man zwar die Größe der Schwankungen im Bildbereich durch Einschränkungen im Definitionsbereich kontrollieren, die Anzahl der Schwankungen (die Anzahl der Richtungswechsel des Graphen) kann man aber nicht kontrollieren.