Topologie/Überlagerungen/Wege-Liftung/Fakt/Beweis

Aus Wikiversity
Beweis

Zu jedem Punkt gibt es eine offene Umgebung derart, dass oberhalb von trivialisiert, d.h. ist die disjunkte Vereinigung von zu über homöomorphen offenen Teilmengen von . Aufgrund der Kompaktheit von gibt es somit endlich viele offene Mengen mit dieser Eigenschaft und mit , mit für alle (da zusammenhängend ist) und mit . Es sei mit aufsteigenden Zeitpunkten . Es sei diejenige zu homöomorphe Teilmenge von , die enthält. Dann gibt es für den auf eingeschränkten Weg nur die Liftung . Dieser Weg hat für einen eindeutigen Endpunkt in , sagen wir

Dazu gehört wiederum eine eindeutige offene Menge homöomorph zu und es gibt eine eindeutige Fortsetzung von dem bisher konstruierten nach . So induktiv fortfahrend erhält man die gesamte eindeutige Liftung des Weges.