Zirkel und Lineal/Konstruktionen/Einführung/Textabschnitt

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Unter der Ebene verstehen wir im Folgenden die Anschauungsebene, die wir später mit identifizieren. Zunächst sind die Konstruktionen „koordinatenfrei“. An elementargeometrischen Objekten verwenden wir Punkte, Geraden und Kreise. An elementargeometrischen Gesetzmäßigkeiten verwenden wir, dass zwei verschiedene Punkte eine eindeutige Gerade definieren, dass zwei Geraden entweder identisch sind oder parallel und schnittpunktfrei oder genau einen Schnittpunkt haben, u.s.w.


Definition  

Es sei eine Teilmenge der Ebene . Eine Gerade heißt aus elementar konstruierbar, wenn es zwei Punkte , , derart gibt, dass die Verbindungsgerade von und gleich ist. Ein Kreis heißt aus elementar konstruierbar, wenn es zwei Punkte , , derart gibt, dass der Kreis mit dem Mittelpunkt und durch den Punkt gleich ist.

Man kann also an zwei Punkte aus der vorgegebenen Menge das Lineal anlegen und die dadurch definierte Gerade zeichnen, und man darf die Nadelspitze des Zirkels in einen Punkt der Menge stechen und die Stiftspitze des Zirkels an einen weiteren Punkt der Menge anlegen und den Kreis ziehen.

Wenn ein Koordinatensystem vorliegt, und zwei Punkte und gegeben sind, so ist die Gleichung der Verbindungsgeraden der beiden Punkte bekanntlich

Wenn zwei Punkte und gegeben sind, so besitzt der Kreis mit dem Mittelpunkt durch den Punkt die Kreisgleichung


Definition  

Es sei eine Teilmenge der Ebene . Dann heißt ein Punkt aus in einem Schritt konstruierbar, wenn eine der folgenden Möglichkeiten zutrifft.

  1. Es gibt zwei aus elementar konstruierbare Geraden und mit .
  2. Es gibt eine aus elementar konstruierbare Gerade und einen aus elementar konstruierbaren Kreis derart, dass ein Schnittpunkt von und ist.
  3. Es gibt zwei aus elementar konstruierbare Kreise und derart, dass ein Schnittpunkt der beiden Kreise ist.


Definition  

Es sei eine Teilmenge der Ebene . Dann heißt ein Punkt aus konstruierbar (oder mit Zirkel und Lineal konstruierbar), wenn es eine Folge von Punkten

gibt derart, dass jeweils aus in einem Schritt konstruierbar ist.


Definition  

Eine Zahl heißt konstruierbar oder konstruierbare Zahl, wenn sie aus der Startmenge mit Zirkel und Lineal konstruierbar ist.

Bemerkung

Man startet also mit zwei beliebig vorgegebenen Punkten, die man und nennt und die dann die arithmetische Funktion übernehmen, die mit diesen Symbolen verbunden wird. Als erstes kann man die Gerade durch und ziehen, und diese Gerade wird mit den reellen Zahlen identifiziert. Wir werden gleich sehen, dass man eine zu senkrechte Gerade durch konstruieren kann, mit deren Hilfe ein kartesisches Koordinatensystem entsteht und mit dem wir die Ebene mit den komplexen Zahlen identifizieren können.

In den folgenden Konstruktionen verwenden wir einige Begrifflichkeiten aus der euklidischen Geometrie, wie Winkel, senkrecht, parallel, Strecke und elementare Grundtatsachen wie die Strahlensätze, Symmetriesätze und den Satz des Pythagoras.


Mediatrice compas.gif




Lemma  

In der Ebene lassen sich folgende Konstruktionen mit Zirkel und Lineal durchführen.

  1. Zu einer Geraden und zwei Punkten kann man die zu senkrechte Gerade zeichnen, die die Strecke zwischen und halbiert.
  2. Zu einer Geraden und einem Punkt kann man die zu senkrechte Gerade durch zeichnen.
  3. Zu einer Geraden und einem Punkt kann man die zu senkrechte Gerade durch zeichnen.
  4. Zu einer gegebenen Geraden und einem gegebenen Punkt kann man die Gerade durch zeichnen, die zu parallel ist.

Beweis  

Wir verwenden im Beweis einige elementargeometrische Grundtatsachen. 
  1. Wir zeichnen die beiden Kreise und mit dem Mittelpunkt durch und umgekehrt. Die beiden Schnittpunkte von und seien und . Deren Verbindungsgerade steht senkrecht auf und halbiert die Strecke zwischen und .
  2. Man zeichnet einen Kreis mit als Mittelpunkt und einem beliebigen Radius (dazu braucht man neben noch einen weiteren Punkt). Es seien und die beiden Schnittpunkte der Gerade mit . Für diese beiden Punkte führen wir die in (1) beschriebene Konstruktion durch. Diese Halbierungsgerade läuft dann durch und steht senkrecht auf .
  3. Wenn auf der Geraden liegt, sind wir schon fertig mit der Konstruktion in (2). Andernfalls zeichnen wir einen Kreis mit als Mittelpunkt mit einem hinreichend großen Radius derart, dass sich zwei Schnittpunkte und mit der Geraden ergeben (dafür braucht man, dass mindestens ein weiterer Punkt zur Verfügung steht). Dann führt wieder die erste Konstruktion zum Ziel.
  4. Dafür führt man zuerst die Konstruktion der Senkrechten durch wie in (3) beschrieben durch. Mit und führt man dann die Konstruktion (2) durch.