Zum Inhalt springen

Zirkel und Lineal/Quadratwurzel/Konstruktion/Textabschnitt

Aus Wikiversity

Wenn man sich zwei Punkte und vorgibt und man die dadurch definierte Gerade mit identifiziert, so wird diese Gerade durch in zwei Hälften (Halbgeraden) unterteilt, wobei man dann diejenige Hälfte, die enthält, als positive Hälfte bezeichnet. Aus solchen positiven reellen Zahlen kann man mit Zirkel und Lineal die Quadratwurzel ziehen.


Es sei eine mit zwei Punkten und markierte Gerade, die wir mit den reellen Zahlen identifizieren. Es sei eine positive reelle Zahl. Dann ist die Quadratwurzel aus mittels Zirkel und Lineal konstruierbar.

Wir zeichnen den Kreis mit Mittelpunkt durch und markieren den zweiten Schnittpunkt dieses Kreises mit als . Wir halbieren die Strecke zwischen und gemäß Fakt und erhalten den konstruierbaren Punkt . Der Abstand von zu als auch zu ist dann . Wir zeichnen den Kreis mit Mittelpunkt und Radius und markieren einen der Schnittpunkte des Kreises mit der zu senkrechten Geraden durch als . Wir wenden den Satz des Pythagoras auf das Dreieck mit den Ecken an. Daraus ergibt sich

Also repräsentiert (der Abstand von zu) die Quadratwurzel aus .


Die Spirale des Theodorus. In dieser Weise kann man alle Quadratwurzeln von natürlichen Zahlen konstruieren.


Die nächste Aussage bedeutet, dass man zu einem gegebenen Rechteck ein flächengleiches Quadrat konstruieren kann.


Es sei ein Rechteck in der Ebene gegeben.

Dann lässt sich mit Zirkel und Lineal ein flächengleiches Quadrat konstruieren.

Die Längen der Rechteckseiten seien und . Wir wählen einen Eckpunkt des Rechtecks als Nullpunkt und verwenden die Geraden durch die anliegenden Rechteckseiten als Koordinatenachsen. Wir wählen willkürlich einen Punkt () auf einer der Achsen und schlagen einen Kreis um den Nullpunkt durch den Eckpunkt auf der anderen Achse, sodass beide Seitenlängen auf der mit und markierten Achse liegen. Darauf führen wir die Multiplikation nach Fakt durch. Aus diesem Produkt zieht man nun gemäß Fakt die Quadratwurzel und erhält somit . Mit dieser Streckenlänge konstruiert man ein Quadrat, dessen Flächeninhalt gleich dem Flächeninhalt des vorgegebenen Rechtecks ist.


Man beachte, dass im Beweis der vorstehenden Aussage die Zahl von der Wahl der abhängt, nicht aber und damit natürlich auch nicht die Seitenlänge des konstruierten Quadrats.