Äquivalenzrelation/Äquivalenzklassen und Repräsentanten in Beispielen/Bemerkung
Wir betrachten in einigen Beispielen von Äquivalenzrelationen die Äquivalenzklassen. Wenn die Äquivalenzrelation die Gleichheit ist, so sind alle Äquivalenzklassen einelementig und die Äquivalenzklasse zu ist einfach die einelementige Menge . Im anderen Extremfall, wenn alle Elemente zueinander äquivalent sind, so gibt es nur eine einzige Äquivalenzklasse, nämlich die Gesamtmenge .
Bei der Äquivalenzrelation auf der Menge der Bruchterme, die durch die Wertegleichheit in gegeben ist, besteht die Äquivalenzklasse zu aus allen anderen Bruchdarstellungen dieser Zahl, also beispielsweise aus . Ein Repräsentantensystem liegt in der Menge aller gekürzten Brüche vor.
Wenn eine Äquivalenzrelation auf durch eine Abbildung im Sinne von Fakt festgelegt ist, so sind die Äquivalenzklassen die nichtleeren Fasern der Abbildung. Die Äquivalenzklasse zu besteht aus dem Urbild von , ist also gleich
Um ein Repräsentantensystem zu erhalten, muss man aus jeder Faser ein Element auswählen. Im Allgemeinen gibt es hier kein besonders einfaches Repräsentantensystem.
In Beispiel besteht die Äquivalenzklasse zu aus (wobei diese beiden Zahlen nicht unbedingt, wie etwa bei , verschieden sein müssen). Wenn angeordnet ist, so kann man die nichtnegativen Elemente als ein übersichtliches Repräsentantensystem heranziehen.
In Beispiel bei der durch die Gaußklammer gegebenen Äquivalenzrelation besteht die Äquivalenzklasse zu aus dem halboffenen Intervall
Ein besonders einfaches Repräsentantensystem ist durch die Menge der ganzen Zahlen gegeben.
Bei der durch das Betrachten des Bruchanteils (der Nachkommazahl) gegebenen Äquivalenzrelation auf besteht die Äquivalenzklasse zu aus der Menge , also aus allen Zahlen, die man von aus mit einem ganzzahligen Schritt erreichen kann. Die Menge der Zahlen zwischen und einschließlich der und ausschließlich der , also der Zahlen aus dem halboffenen Intervall , ist ein Repräsentantensystem.
In Beispiel, der Erreichbarkeitsrelation auf dem Landweg, besteht die Äquivalenzklasse zu aus der Insel bzw. dem Kontinent, auf der bzw. dem der Punkt liegt.