Dachprodukt/Elementare Eigenschaften/Fakt/Beweis

Aus Wikiversity
Zur Navigation springen Zur Suche springen
Beweis

(1) folgt direkt aus der Konstruktion.
(2). Es liegt die zusammengesetzte Abbildung

vor, wobei auf und dies auf die Restklasse abgebildet wird. Dabei sichert die Definition des Unterraums , dass jeweils die Eigenschaften einer multilinearen alternierenden Abbildung erfüllt sind.

(3) gilt nach Fakt für jede alternierende Abbildung.
(4). Die erste Gleichung gilt nach Fakt für jede multilineare Abbildung. Wenn sich in dem Indextupel ein Eintrag wiederholt, so ist wegen alternierend. Wir müssen also nur noch Tupel betrachten, wo alle Einträge verschieden sind. Diese können nach Umordnen auf die Form gebracht werden. Bei einem fixierten aufsteigenden Indextupel ist die Summe über alle dazu permutierten Indextupel gleich


Zur bewiesenen Aussage