Zum Inhalt springen

Endliches Modell/Elementar äquivalent und isomorph/Fakt/Beweis

Aus Wikiversity
Beweis

Dass eine Isomorphie elementare Äquivalenz impliziert, wurde in Fakt bewiesen. Für die Umkehrung seien also die beiden Strukturen elementar äquivalent, und habe Elemente. Dann gilt in die Aussage

und die entsprechende Aussage für gilt nicht. Aufgrund der elementaren Äquivalenz gilt diese Aussage (bzw. die entsprechende Aussage) auch (nicht) in . D.h. ist ebenfalls endlich mit Elementen.

Wir konstruieren nun sukzessive Teilmengen , wobei die funktional abgeschlossen sind, und Abbildungen

mit und derart, dass die für jedes Isomorphismen zwischen und sind.

Wir wählen beliebig und setzen als die kleinste, funktional abgeschlossene Teilmenge in an, die enthält. Nach Fakt gibt es einen Ausdruck in einer freien Variablen, der die elementare Äquivalenzklasse beschreibt. Wir wählen ein Element aus der entsprechenden Äquivalenzklasse in (und diese ist nicht leer wegen der elementaren Äquivalenz zwischen und ) und setzen

Für jedes formal-zusammengesetzte Funktionssymbol definieren wir (hierbei wird überall bzw. eingesetzt)

Diese Abbildung ist wohldefiniert. Ist nämlich

so gilt in

da dies für gilt und daher auch für alle dazu elementar äquivalenten Elemente, und da für die dazu nicht elementar äquivalenten Elemente der Vordersatz nicht gilt. Diese Aussage gilt dann auch bei Interpretation über . Daher ist

Wir müssen zeigen, dass ein Homomorphismus vorliegt. Die Verträglichkeit mit den Funktionssymbolen folgt unmittelbar aus der Definition der Abbildung. Ferner wird jedes Element zu einem Element aus der entsprechenden Äquivalenzklasse abgebildet. Nach (dem Beweis zu) Fakt und wegen der elementaren Äquivalenz berücksichtigt daher die Relationen. Dies gilt in beide Richtungen, d.h. eine Relation trifft auf ein Tupel genau dann zu, wenn dies auf das Bildtupel zutrifft. Die Abbildung ist injektiv: Zu zwei Elementen gibt es zusammengesetzte Funktionssymbole und mit und Bei gilt

da dies bei Interpretation von durch gilt, und diese Aussage gilt auch in . Die Abbildung ist surjektiv auf das Bild, also liegt wegen der Äquivalenz bei den Relationen insgesamt ein Isomorphismus vor.

Es seien nun und schon konstruiert und . Wir wählen und setzen als die funktionale Hülle von an. Wir betrachten die Menge aller Tupel , wobei ein Ausdruck in den freien Variablen und ist und wobei mit der Eigenschaft, dass

gilt. Dabei sei eine fixierte Interpretation auf und entsprechend eine Interpretation auf . Es gilt dann insbesondere

Daher gilt nach Fakt (angewendet auf den Isomorphismus mit ) auch

und insbesondere gibt es ein (zunächst von abhängiges) mit

Dann gibt es auch ein , das man für alle nehmen kann. Für jedes einzelne ist nämlich die erfüllende Elementmenge nicht leer, und wenn der Durchschnitt über alle leer wäre, dann schon für eine endliche Teilmenge und dann auch für die endliche Konjunktion darüber. Es sei ein solches Element. Wir setzen nun

und definieren

für jedes -stellige formal zusammengesetzte Funktionssymbol . Die Wohldefiniertheit von , die Verträglichkeit mit den Funktionssymbolen und mit den Relationssymbolen (in beide Richtungen) sowie die Bijektivität und damit die Isomorphieeigenschaft folgt wie oben.

Da endlich ist, erhalten wir, wenn wir diesen Konstruktionsschritt iterieren, insgesamt eine injektive Abbildung

Da und gleich viele Elemente besitzen, ist diese auch surjektiv und insgesamt erhalten wir einen Isomorphismus.