Endomorphismus/Invarianter Unterraum/Minimalpolynom/Teilbarkeit/Fakt

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Es sei ein Körper und es sei ein endlichdimensionaler -Vektorraum. Es sei

eine lineare Abbildung. Es sei

ein -invarianter Untervektorraum und

die Einschränkung auf (auch im Bildbereich).

Dann ist das Minimalpolynom zu ein Vielfaches des Minimalpolynoms von .

Zum Beweis, Alternativen Beweis erstellen