Endomorphismus/K/Potenz/Beschränktheit/Fakt

Aus Wikiversity
Zur Navigation springen Zur Suche springen

Es sei ein endlichdimensionaler -Vektorraum und

ein Endomorphismus. Dann sind folgende Eigenschaften äquivalent.

  1. ist stabil.
  2. Zu jedem ist die Folge , , beschränkt.
  3. Es gibt ein Erzeugendensystem derart, dass , , beschränkt ist.
  4. Der Betrag eines jeden komplexen Eigenwerts von ist kleiner oder gleich und die Eigenwerte mit Betrag sind diagonalisierbar, d.h. ihre algebraische Vielfachheit ist gleich ihrer geometrischen Vielfachheit.
  5. Für eine beschreibende Matrix von , aufgefasst über , sind die Jordan-Blöcke der jordanschen Normalform gleich

    mit oder gleich mit .

Zum Beweis, Alternativen Beweis erstellen