Zum Inhalt springen

Isometrie/Verschiedene Charakterisierungen mit Orthonormalbasis/Fakt/Beweis/Aufgabe

Aus Wikiversity

Es seien und euklidische Vektorräume und sei

eine lineare Abbildung. Zeige, dass die folgenden Aussagen äquivalent sind.

  1. ist eine Isometrie.
  2. Für jede Orthonormalbasis , von ist , Teil einer Orthonormalbasis von .
  3. Es gibt eine Orthonormalbasis , von derart, dass , Teil einer Orthonormalbasis von ist.